
Towards a Unified Ordering for
Superposition-based Automated Reasoning?

Jan Jakubův1 and Cezary Kaliszyk2

1 Czech Technical University in Prague, Prague, Czech Republic
jakubuv@gmail.com

2 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac.at

Abstract. We propose an extension of the automated theorem prover
E by the weighted path ordering. Weighted path ordering is theoretically
stronger than all the orderings used in E-prover, however its parametriza-
tion is more involved than those normally used in automated reasoning.
In particular, it depends on a term algebra. We discuss how the param-
eters for the ordering can be proposed automatically for particular the-
orem proving problem strategies. We integrate the ordering in E-prover
and perform an evaluation on the standard theorem proving benchmarks.
The ordering is complementary to the ones used in E prover so far.

Keywords: automated reasoning, term orderings, weighted path order,
superposition calculus

1 Introduction

In the last two decades the superposition calculus has become one of the main
foundations of automated theorem provers for first-order logic. Indeed the sys-
tems regularly winning the yearly CADE ATP Systems Competition, such as
E [7] and Vampire [2] are based on the superposition calculus. Also for the prob-
lems not previously solved by humans, superposition calculus based Prover9 has
been most useful so far [5].

The use of powerful and efficient orderings is one of the major advantages
of the superposition calculus for classical first-order theorem proving. Orderings
allow provers to avoid redundant clauses, namely clauses which only differ in the
order of literals, as well as permit orienting equations and therefore rewriting
the clauses only in one direction. The three predominantly used orderings in
automated theorem proving are LPO, KBO, and RPO. In fact for the former
two optimized implementations are known [4,3].

However, term rewriting research has shown that there exist more powerful
orderings, for example the weighted path order (WPO) [10] is one of the strongest
known orderings. With carefully selected parameters is can subsume most known
? Supported by the ERC Consolidator grant no. 649043 AI4REASON, ERC Starting
grant no. 714034 SMART, and FWF grant P26201.

2 Jakubův, Kaliszyk

orderings including LPO, KBO, and RPO [11]. There are however two reasons,
why such stronger orderings have not been tried for automated reasoning so far.
First, they often rely on complicated parameters. For example WPO relies on
an algebra on terms as an argument. Second, the efficiency of KBO, LPO, or
even RPO has been optimized for the most common cases, whereas the more
advanced orderings have been stated in a general manner, without optimizing
their efficiency.

In this paper we attempt to overcome both of these obstacles and propose
an efficient way to implement WPO as part of an automated reasoning system.
We also propose parameters that allow WPO to function efficiently within a
state-of-the-art automated theorem prover and help with actual theorem prov-
ing problems. After discussing the preliminaries on term orderings in Section 2
and on their use in the superposition calculus in Section 3, the particular con-
tributions of this paper are:

– We propose algebras that can be used efficiently for first-order theorem prov-
ing (Section 4),

– We present an optimized pseudocode for WPO in terms of typical ATP struc-
tures and implement an extension of E-prover that supports WPO (Sect. 4).

– We evaluate WPO against existing orderings in E-prover on parts of the
TPTP library, the proofs stemming from the AIM conjecture [9], and on the
CoqHammer proofs [1] in Section 5.

2 Term Orderings and Rewriting

We work in first-order logic (FOL). A signature Σ is a collection of symbols
with arities. The set of first-order variables is denoted V, and TΣ stands for the
terms over signature Σ and variables V. A literal is an atomic formula or its
negation, and a clause is a disjunction of literals. In ATPs, clauses are used to
describe both the input problem, and the knowledge inferred during the search.
On occasion, unit equality clauses of the form s = t are inferred. Such equalities
can be used to simplify other clauses using s→ t or t→ s as a rewriting rule.

Rewriting systems, described by finite sets of rewriting rules, are often used
inside ATPs to keep a set of clauses in normal forms. A crucial property for
ATPs is the termination of every rewriting chain on any term. The termination
of system R can be shown using a well-founded term ordering >T on terms T ,
that orients every rule (s → t) ∈ R, meaning s >T t. Terminating rewriting
systems are called reduction orders. See [6,11] for details.

Reduction orders are successfully used in many state-of-the-art ATPs. Com-
mon orders [6,11] are lexicographic path order (LPO) and Knuth-Bendix order
(KBO). LPO extends a precedence >Σ on symbols to a reduction order on TΣ
by a variety of subterm comparisons. KBO is generated by a precedence and
symbol weights. Terms in KBO are first compared by weights and the subterm
comparisons are necessary only if the weights differ. WPO further abstracts the
idea of symbol weight comparisons to comparisons in algebras as follows.

Towards WPO in Superposition Calculus 3

Definition 1. An algebra A over Σ consists of a well-ordered carrier set and
of an interpretation fA : Nn → N for every n-ary function symbol f from Σ.
An algebra A is weakly monotone iff a ≥ b implies f(. . . , a, . . .) ≥ f(. . . , b, . . .),
and weakly simple iff f(. . . , a, . . .) ≥ a for every f ∈ Σ.

In this work, we consider the carrier set always to be N with the standard
order on N. Given a variable assignment σ : V → N, we can structurally interpret
every term t ∈ TΣ using interpretations from algebraA as the number σA(t) ∈ N,
formally as follows.

σA(x) = σ(x) σA(f(s1, . . . , sn)) = fA(σA(s1), . . . , σA(sn)))

Thus the algebra A induces the following ordering >A on terms: s >A t iff
σA(s) > σA(t) for every variable assignment σ. Similarly, we write s ≥A t iff
σA(s) ≥ σA(t) for every σ. The following defines WPO induced by A.

Definition 2 (WPO [11]). Given a precedence >Σ and an algebra A over Σ,
the weighted path order >wpo on TΣ is defined as follows: s = f(s1, . . . , sn) >wpo
t iff (1) s >A t, or (2) s ≥A t and one of the following holds:

2a. ∃i ∈ {1, . . . , n}. si ≥wpo t, or
2b. t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s >wpo tj and either

(i) f >Σ g, or
(ii) f = g and (s1, . . . , sn) >

lex
wpo (t1, . . . , tn).

Only terms comparable in A are comparable in >wpo. Strict order s >A t
alone implies s >wpo t. Otherwise s ≥A must hold and various subterm condi-
tions are checked. In (2a), ≥wpo is the reflexive closure of >wpo, while >A and
≥A are separately defined orders induced by A. In (2b/ii) the lexicographical
extension >lexwpo of >wpo to n-tuples is used when the compared terms have the
same head symbol.

If the WPO algebra A is weakly monotone and weakly simple, then >wpo
is a reduction order [11, Theorem 13]. With different algebras, WPO is known
to behave like LPO [11, Theorem 19], or like KBO [11, Theorem 16], or to
subsume both [11, Theorem 20]. Instantiations of WPO with different algebras
are discussed in Section 4.

3 Orderings in Superposition Calculus

Saturation based automated theorem provers, like E prover [7], attempt to prove
a first-order goal conjecture G in a theory T , that is, T ` G. First, theory axioms
with the negated conjecture T ∪{¬G} are translated to a logically equivalent set
of clauses. Then, a saturation process is initiated, which selects an unprocessed
clause C and computes all possible inferences of C with all the previously pro-
cessed clauses. Clause C is then marked as processed and another unprocessed
clause is selected. This process continues until an empty clause (contradiction)

4 Jakubův, Kaliszyk

is derived, or there are no more unprocessed clauses (the set of processed clauses
becomes saturated), or the prover runs out of resources.

The saturation process uses term orderings for various purposes depending
on the selected inference rules. The classical resolution rule allows to infer the
clause (C1∨C2)σ from clauses (L1∨C1) and (¬L2∨C2) provided L1 and L2 are
unifiable with the unifier σ. The ordered resolution restricts the classical resolu-
tion rule to literals maximal in each clause (w.r.t. a fixed term ordering >T). In
paramodulation, inferred unit equality clauses of the form s = t, which can be
oriented using the ordering (either s >T t or t >T s), can be used as rewriting
rules (s→ t or t→ s, respectively). The processed clauses are then kept in their
normal form with respect to the inferred rewriting rules (called demodulators).
All these extensions restrict the number of possible inferences preserving com-
pleteness (that is, they do not prevent the inference of the empty clause). Clearly,
the more terms are comparable, the more inferences are restricted, which leads
to a more effective search space reduction.

E prover implements LPO and KBO. The desired term ordering can be se-
lected using a command-line option. E implements approximately ten signature-
independent methods to generate the precedence on the symbols. In this work,
we shall consider the following.

(arity/iarity) Symbols are sorted by arity or reverse arity. Symbols with higher
arity are larger/smaller.

(freq/ifreq) Symbols are sorted by the frequency of their occurrence in the
input problem. Frequently occurring symbols are larger/smaller. In the case
of the same frequency, symbols are sorted by arity.

(ufirst) Same as arity but unary symbols are smaller. In the case of the same
arity, symbols are sorted by frequency.

(ufreq) Same as ifreq but unary symbols are always smaller.

KBO is additionally parametrized by a weight function (w,w0). E implements
several ways of generating weights for a given problem. We shall consider the
following. All of these set the variable weight w0 to 1 and only differ in w.

(const) The weights of all the symbols are set to the constant 1.
(arity/iarity) The weight of an n-ary function symbol is set to n+ 1 (respec-

tively to m− n+ 1, where m is the largest symbol arity).
(prec/iprec) Given a symbol precedence <, the weight of symbol f is the

number of symbols smaller/larger than f increased by 1.
(fcount/ifcount) The weight of symbol f is the number of occurrences of f in

the input problem (respectively m minus the number of occurrences, where
m is the frequency of the most occurring symbol).

(frank/ifrank) Sort all function symbols by frequency of occurrence (which
induces a total quasi-ordering). The weight of a symbol is the rank of it’s
equivalence class, with less frequent symbols getting lower/higher weights.

Additionally, E allows user-defined weights for all constant symbols, which over-
ride the weight assigned by the above weight generation schemes. Finally, E

Towards WPO in Superposition Calculus 5

allows both a specific user-defined precedence and specific symbol weights. We
do not, however, consider these specific settings as they depends on a signature.
Our implementation of WPO in E Prover is described in the next Section 4.

4 Implementation of WPO in E Prover

This section describes our implementation of WPO in E Prover. We introduce
two specific algebras from the literature [11]. Both algebras are weakly mono-
tone and simple, and hence instantiate WPO to a reduction order. We discuss
the implementation of algebra comparisons and provide several coefficient gen-
eration schemes for WPO. We conclude by a brief description of our main WPO
comparison method. First we introduce Sum-algebras which sum the arguments
with a positive multiplier.

Definition 3 (Sum-algebra). A Sum-algebra A over Σ induced by (w, c) is
an algebra over Σ where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = w(f) +

n∑
i=1

c(f, i) ∗ ai

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th
argument of f (called subterm coefficient).

Both the weights and subterm coefficients can be zero under certain addi-
tional conditions [11, Theorems 5 & 13]. All E weight generation schemes used
in this work produce non-zero weights, and hence we consider only positive co-
efficients, mainly to simplify the implementation. Experimenting with non-zero
values is left as future work. The carrier set of A can be instantiated by a subset
of N ({n ∈ N : n ≥ w0} for some w0 ∈ N). Note, that a restriction of such a
Sum-algebra to w0 > 0 and c(f, i) = 1 is equivalent to KBO [11, Theorem 16].

Given a Sum-algebra A over Σ, every term s ∈ TΣ can be interpreted in A as
an expression of the grammar “E ::= N | V | (E+E) | (N ∗E)”. This expression
contains variables vars(s) = {x1, . . . , xn}. The expression can transformed to the
equivalent expression sA of the following form, which we say interprets s in A
(for appropriate ci ∈ N).

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · ·+ cn ∗ xn

Since the definitions of >A and ≥A involve an infinite number of variable
assignments, it is necessary to provide an efficient algorithm to check the algebra
comparisons in WPO. The following lemma helps us to achieve that. Note that,
we take the liberty of reordering variables so that shared variables come first.

Lemma 1. Given Sum-algebra A over Σ and terms s, t ∈ TΣ, let vars(t) ⊆
vars(s) = {x1, . . . , xn} and let vars(t) = {x1, . . . , xm} for some m ≤ n. Let

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · ·+ cn ∗ xn
tA(x1, . . . , xm) = d0 + d1 ∗ x1 + · · ·+ dm ∗ xm

6 Jakubův, Kaliszyk

be the interpretations of s and t in A. Then the following holds.

s >A t iff ∀i ∈ {1, . . . ,m}. ci ≥ di and c0 > d0
s ≥A t iff ∀i ∈ {0, . . . ,m}. ci ≥ di

Clearly, s >A t (and also s ≥A t) implies vars(t) ⊆ vars(s), hence the variable
requirement is not a limitation. WPO requires algebras to be weakly monotone
to generate a reduction order. Similarly, the notion of strictly monotone algebras
can be defined (using strict comparisons instead of weak ones). Sum-algebras
are strictly (and hence weakly) monotone. We next define the Max -algebras,
which use max instead of addition, making them weakly monotone.

Definition 4 (Max -algebra). A Max -algebra A over Σ induced by (w, c) is
an algebra over Σ where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = max
(
w(f) ,

n
max
i=1

(c(f, i) + ai)
)

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th
argument of f (called subterm penalty).

Again, zero weights and penalties are allowed under certain conditions, which
we omit in this presentation. For example, setting all the weights and penalty
coefficients to zeros makes WPO behave like LPO [11, Theorem 19]. Similarly
to Sum-algebras, given a Max -algebra A over Σ, every term s ∈ TΣ with
vars(s) = {x1, . . . , xn} can be interpreted by an expression sA of the following
form, which is said to interpret s in A.

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)

The following allows efficiently comparing terms inMax -algebras.

Lemma 2. Let Max -algebra A over Σ and terms s, t ∈ TΣ be given. Let
vars(t) ⊆ vars(s) = {x1, . . . , xn} and vars(t) = {x1, . . . , xm} for some m ≤ n.
Let

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)
tA(x1, . . . , xm) = max(d0, x1 + d1, . . . , xm + dm)

interpret s and t in A. Let cmax = max(c0, . . . , cn) and dmax = max(d0, . . . , dm).
Then the following holds.

s >A t iff cmax > dmax and ∀i ∈ {1, . . . ,m}. ci > di
s ≥A t iff cmax ≥ dmax and ∀i ∈ {1, . . . ,m}. ci ≥ di

Note that in s >A t, as opposed to Lemma 1, we require all the coefficients
to be strictly greater. Otherwise max(x+2, y+1) would be strictly greater than
max(x+1, y+1). We do not compare the constant coefficients c0 and d0, because,
for example, max(1, x+3) is always greater than max(2, x+2) even though the
constant coefficients are not. The proof of Lemma 2 follows from the observation
that c0 can be substituted by cmax without affecting the value of sA.

Inspired by precedence/weight generation schemes in E, we have implemented
the following subterm coefficient generation schemes. These schemes generate
coefficients c(f, i) to be used both in Sum andMax -algebras.

Towards WPO in Superposition Calculus 7

(constant) All coefficients are set to 1.
(arity) For an n-ary function symbol f we set c(f, i) = n.
(firstmax) For all f , the first coefficient c(f, 1) is set 2 while the others to 1.
(firstmin) For all f , the first coefficient c(f, 1) is set 1 while the others to 2.
(asc/desc) Set up ascending/descending coefficients. For an n-ary function

symbol f we set c(f, i) = i (respectively c(f, i) = n− i+ 1).

To implement a new term ordering >T in E, a term comparison method
is required. The method takes two terms s and t as input and returns whether
s <T t, or s >T t, or s = t, or the terms are incomparable. We have implemented
the WPO comparison methods for Sum andMax algebras. Our implementation
mostly follows Definition 2. At first we check strict algebra comparisons >A. To
do that, we compute coefficients ci and di from Lemma 1 or 2 by a traversal of
s and t. If the coefficients are the same, we clearly have both s ≥A t and t ≥A s.
If s >A t, we return s >wpo t (and vice versa). For terms incomparable with
>A, we proceed with the weak comparison ≥A. If they are weakly comparable,
we proceed with the subterm checks.

5 Experimental Evaluation

We evaluate our experimental implementation3 of WPO in E Prover on four
complementary benchmarks with 200 problems each. Benchmark problems are
from two TPTP [8] categories (LAT and REL), from the Abelian Inner Mappings
project (AIM) [9], and from CoqHammer [1]. We evaluate all instances of LPO,
KBO, and WPO induced by the generation schemes described above, in order
to estimate the value of WPO for E. This gives us a collection of about 800
benchmark problems which we believe are reasonably orthogonal to allow us to
perform an objective evaluation. As we evaluate around 1400 different ordering
instances on all of the benchmark problems, it is important to limit the number
of problems so that the evaluation can be done in a reasonable time.4 The
limit of 1000 processed clauses, instead of time limit, is used for an evaluation
independent on implementation effectiveness. We use a single good-performing
E strategy with the different term orders.

We have 6 instances of LPO, 108 instances KBO, and 1296 of WPO. The
results for each benchmark are in Table 1. For each ordering, the column “by”
shows the least number of instances necessary to solve the number in the col-
umn solved. Number of problems solved by E’s automated term order selection
is shown in column “Auto”. The “all ” columns show combined performance. Ta-
ble 2 shows the best-performing instance for every order type, measuring number
problems solved and the number of problems solved additionally to Auto mode
(column “E+”). The parameters of the instances select the generation schemes
for precedence, weights, algebra, and coefficients.
3 https://github.com/ai4reason/eprover/tree/WPO
4 The evaluation took around 2 days employing 32 cores of Intel(R) Xeon(R) CPU
E5-2698 v3 @ 2.30GHz with 128 GB memory in total.

https://github.com/ai4reason/eprover/tree/WPO

8 Jakubův, Kaliszyk

Auto LPO KBO WPO all
solved solved by solved by solved by solved by

TPTP/LAT 27 28 2 30 2 34 5 36 5
TPTP/REL 49 68 3 59 2 75 2 77 3
AIM 35 44 2 38 2 54 4 54 4
COQ 22 26 3 27 2 27 2 27 2

Table 1. Total number of problems solved by all LPO, KBO, and WPO instances.

TPTP/REL solved E+
WPO(freq,prec,Sum,desc) 63 14
LPO(arity) 59 12
KBO(iarity,iarity) 57 8
E (Auto) 49 0

TPTP/LAT solved E+
KBO(iarity,iprec) 29 3
WPO(arity,iprec,Sum,const) 28 1
LPO(arity) 27 0
E (Auto) 27 0
WPO(ifreq,prec,Max ,desc) 24 3

AIM solved E+
WPO(freq,fcount,Sum,desc) 41 5
LPO(arity) 41 4
KBO(freq,ifrank,c1) 37 1
E (Auto) 35 0

COQ solved E+
WPO(arity,fcount,Sum,desc) 26 4
KBO(arity,fcount) 25 3
LPO(ufreq) 24 4
E (Auto) 22 0

Table 2. Best instances of LPO, KBO, and WPO for each benchmark.

WPO helped to solve more problems for each benchmark. It also solved
problems unsolved by Auto. Furthermore, the strongest WPO is usually equal
or better than the strongest version of LPO and KBO. LPO(arity) is often the
best of LPOs. As for WPO, Sum often performs better than Max overall but
Max can solve unique problems. The algebra coefficients generated by desc
often perform best.

As stated above, we used a limit on processed clauses rather than on runtime,
in order to abstract from implementation details. In order to asses the effective-
ness of our implementation, we have additionally evaluated the best performing
ordering instances from Table 2 on the benchmark problems with runtime limit
of 5 seconds. For each benchmark category (AIM, COQ, etc.) we have computed
the average runtime on the problems solved by all the instances. The results
vary on different categories but LPO is usually the fastest and KBO is in av-
erage from 10% to 40% slower. The speed of WPO varies, but in average it is
from 40% to 140% slower than LPO. However, for example on TPTP/REL, our
implementation of WPO is in average faster than both LPO and KPO. We con-
clude that our implementation can be definitely made more effective, but even
in the current state, it can provide a valuable gain.

Towards WPO in Superposition Calculus 9

6 Conclusion

In this paper we proposed efficient implementations of algebras that allow in-
tegrating more powerful orderings in the superposition calculus. The resulting
E strategies are more precise, resulting in complementary proofs on the vari-
ous corpora and have a potential to benefit E prover and superposition calculus
ATPs in general.

As future work, we would like to experiment with further algebras, additional
coefficient settings, and with zero weights, as this might further reduce the num-
ber of derived clauses. We would also like to further optimize the efficiency of
the algebra comparisons, as well as the computation of the ordering itself, as
well as perform more thorough evaluations.

References

1. Czajka, Ł., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory.
J. Autom. Reasoning (2018)

2. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Computer-
Aided Verification (CAV 2013). LNCS, vol. 8044, pp. 1–35. Springer (2013)

3. Löchner, B.: Things to know when implementing KBO. J. Autom. Reasoning 36(4),
289–310 (2006)

4. Löchner, B.: Things to know when implementing LPO. International Journal on
Artificial Intelligence Tools 15(1), 53–80 (2006)

5. McCune, W.: Solution of the Robbins problem. J. Autom. Reasoning 19(3), 263–
276 (1997)

6. Middeldorp, A.: Term rewriting lecture notes (2017), 9th International School on
Rewriting (ISR 2017)

7. Schulz, S.: System description: E 1.8. In: Logic for Programming, Artificial Intel-
ligence (LPAR 2013). LNCS, vol. 8312, pp. 735–743. Springer (2013)

8. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502 (2017)

9. Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition -
CASC-J8. AI Communications 29(5), 607–619 (2016)

10. Yamada, A., Kusakari, K., Sakabe, T.: Unifying the Knuth-Bendix, recursive path
and polynomial orders. In: PPDP. pp. 181–192. ACM (2013)

11. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Sci. Comput. Program. 111, 110–134 (2015)

	Towards a Unified Ordering for Superposition-based Automated Reasoning
	Introduction
	Term Orderings and Rewriting
	Orderings in Superposition Calculus
	Implementation of WPO in E Prover
	Experimental Evaluation
	Conclusion

