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Abstract
We present CoqHammer: the first full hammer system for
the Coq proof assistant. The system translates Coq logic
to untyped first-order logic and uses external automated
theorem provers (ATPs) to prove the translations of user
given conjectures. Based on the output of the ATPs, the
conjecture is then re-proved in the logic of Coq using an
eauto-type proof search algorithm. Together with machine-
learning based selection of relevant premises this constitutes
a full hammer system.

The performance of the overall procedure has been evalu-
ated in a bootstrapping scenario emulating the development
of the Coq standard library. Over 40% of the theorems in
the Coq standard library can be proved in a push-button
mode in about 40 seconds of real time on a 8-CPU system.
This offers a huge saving of human work in programming
language formalizations.
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1 Introduction
Hammers provide most powerful general purpose automa-
tion for proof assistants based on HOL and set theory to-
day [3]. A hammer system combines learning from previous
proofs with translation of the problems to the logics of auto-
mated systems and reconstruction of the successfully found
proofs. For many higher-order logic developments a third
of the proofs can be proved by a hammer in push-button
mode [2, 5]. Despite the gaining popularity of the more ad-
vanced versions of type theory, such as those based on the
Calculus of Inductive Constructions, the construction of ham-
mers for such foundations has been hindered so far by the
lack of translation and reconstruction components. In this
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paper we present CoqHammer [4]: a full hammer system for
the Coq proof assistant.

2 Architecture
The goal of a hammer is for a context Γ which consists of all
declarations accessible at a given point from the Coq kernel
(typically there are thousands or tens of thousands of them),
and a conjecture τ of type Prop, to find a termM such that
Γ ⊢ M : τ . Hammers work in three phases.

Premise selection which heuristically chooses a subset of
the accessible declarations that are likely useful for the con-
jecture τ . These declarations, together with the declarations
they depend on, form a context Γ0 ⊆ Γ. Typically, the size
of Γ0 is on the order of hundreds of declarations. In Co-
qHammer this phase is performed using machine learning
algorithms: k-nearest neighbours or Sparse Naive Bayes.

Translation of the conjecture τ together with the con-
text Γ0 to the input formats of first-order automated theorem
provers (ATPs) like Vampire [6] or Eprover [7], and running
the ATPs on the translations. The reason for employing first-
order ATPs is that they are currently the strongest and most
optimised general-purpose automated theorem provers.
For CoqHammer we had to devise a new translation ef-

ficiently handling a reasonable subset of dependent type
theory. The translation is neither sound nor complete, but
it is sound and complete “enough” to be practically usable
by a hammer tool. The ATPs employed are classical while
the logic of Coq is intuitionistic, but this generates fewer
problems than might be expected.

Reconstruction which uses the information obtained from
a successful ATP run to re-prove the conjecture in the logic
of the proof assistant or to directly reconstruct the proof
term.
In CoqHammer proof reconstruction is performed by an

auto-type algorithm implemented in Ltac. The proof search
procedure does mostly backward Prolog-style reasoning –
modifying the goal by applying hypotheses from the con-
text. The core of our search procedure may be seen as an
extension of the Ben-Yelles algorithm to first-order intuition-
istic logic with all connectives [8]. Our implementation ex-
tends this core idea with various heuristics. We augment the
proof search procedure with the use of existential metavari-
ables like in eauto, a looping check, some limited forward
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reasoning, the use of the congruence tactic, and heuristic
rewriting using equational hypotheses. Our reconstruction
tactics are also available for separate use, without invoking
external ATPs.

The proof reconstruction phase does not assume any addi-
tional axioms. We re-prove the theorems in the intuitionistic
logic of Coq, effectively using the output of the ATPs merely
as hints. Currently, the only information from ATP runs we
use is a list of lemmas needed by the ATP to prove the theo-
rem (these are added to the context) and a list of constant
definitions used in the ATP proof (we try unfolding these
constants and no others).

This strategy is surprisingly successful, with over 85% of
the theorems proven by the ATPs reconstructed in the logic
of Coq.

3 Usage
A typical use of a hammer is to prove relatively simple goals
using available lemmas. The problem is to find appropriate
lemmas in a large collection of all accessible lemmas and
combine them to prove the goal. An example of a goal solv-
able by our hammer, but not solvable by any standard Coq
tactics, is the following.
forall (A : Type) (l1 l2 : list A)

(x y1 y2 y3 : A),
In x l1 \/ In x l2 \/ x = y1 \/
In x (y2 :: y3 :: nil) ->
In x (y1 :: (l1 ++ (y2 :: (l2 ++

(y3 :: nil)))))

The statement asserts that if x occurs in one of the lists l1,
l2, or is equal to y1, or occurs in the list y2 :: y3 :: nil
consisting of the elements y2, y3, then it occurs in the list

y1 :: (l1 ++ (y2 :: (l2 ++ (y3 :: nil))))

where ++ denotes list append and :: denotes the list cons
operator. Eprover quickly finds a proof of the goal using six
lemmas from the module Lists.List in the Coq standard
library: in_nil, in_inv, in_cons, app_comm_cons, in_eq,
in_or_app. The found ATP proof may be automatically re-
constructed in Coq by our proof search procedure.
The advantage of a hammer is that it is a general sys-

tem not depending on any domain-specific knowledge. The
hammer plugin may use all currently accessible lemmas, in-
cluding those proven earlier in a given formalization, not
only the lemmas from the standard library or other libraries.

The CoqHammer tool is implemented as a Coq plugin. It
provides a tactic hammer which invokes the external ATPs
on a translation of the current goal, with the translations of
the preselected lemmas as the axioms. It invokes a number
of ATPs in parallel, and when one of them succeeds tries to
reconstruct the proof in Coq using the returned dependen-
cies. The reconstruction phase tries different variants of our
proof search procedure with time limits for each reconstruc-
tion tactic. When one of the tactics succeeds it is displayed

by CoqHammer in the response window. The user is then
supposed to replace the hammer tactic with the displayed
reconstruction tactic. The reconstruction tactic (usable also
as a standalone tool) does not use any time limits or external
ATPs – its success is reproducible on different machines

The source code of the CoqHammer plugin for Coq ver-
sions 8.5 and 8.6 is available at:

http://cl-informatik.uibk.ac.at/cek/coqhammer/
The hammer is able to re-prove completely automatically

40.8% of the Coq standard library proofs on a 8-CPU system
in about 40 seconds. However, since we tested the plugin only
on the Coq standard library during development, the success
rate may be noticeably lower for other libraries, especially
when dependent types are heavily used.

4 Conclusion
We presented CoqHammer: the first full hammer system for
the Coq proof assistant. CoqHammer is a general-purpose
automated reasoning system capable of re-proving over 40%
of Coq standard library lemmas. This offers a substantial
saving of human work, also in the programming language
formalization effort. It also complements more domain spe-
cific automation, such as SMTCoq [1].
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