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Hammer for Coq
Automation for Dependent Type Theory

Łukasz Czajka · Cezary Kaliszyk

Abstract Hammers provide most powerful general purpose automation for proof
assistants based on HOL and set theory today. Despite the gaining popularity of
the more advanced versions of type theory, such as those based on the Calculus of
Inductive Constructions, the construction of hammers for such foundations has been
hindered so far by the lack of translation and reconstruction components.

In this paper, we present an architecture of a full hammer for dependent type
theory together with its implementation for the Coq proof assistant. A key component
of the hammer is a proposed translation from the Calculus of Inductive Constructions,
with certain extensions introduced by Coq, to untyped first-order logic. The translation
is “sufficiently” sound and complete to be of practical use for automated theorem
provers. We also introduce a proof reconstruction mechanism based on an eauto-type
algorithm combined with limited rewriting, congruence closure and some forward
reasoning. The algorithm is able to re-prove in the Coq logic most of the theorems
established by the ATPs.

Together with machine-learning based selection of relevant premises this consti-
tutes a full hammer system. The performance of the whole procedure is evaluated in
a bootstrapping scenario emulating the development of the Coq standard library. For
each theorem in the library only the previous theorems and proofs can be used. We
show that 40.8% of the theorems can be proved in a push-button mode in about 40
seconds of real time on a 8-CPU system.

1 Introduction

Interactive Theorem Proving (ITP) systems [HUW14] become more important in
certifying mathematical proofs and properties of software and hardware. A large
part of the process of proof formalisation consists of providing justifications for
smaller goals. Many of such goals would be considered trivial by mathematicians.
Still, modern ITPs require users to spend an important part of the formalisation effort
on such easy goals. The main points that constitute this effort are usually library
search, minor transformations on the already proved theorems (such as reordering
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assumptions or reasoning modulo associativity-commutativity), as well as combining
a small number of simple known lemmas.

ITP automation techniques are able to reduce this effort significantly. Automation
techniques are most developed for systems that are based on somewhat simple logics,
such as those based on first-order logic, higher-order logic, or the untyped foundations
of ACL2. The strongest general purpose proof assistant automation technique is
today provided by tools called “hammers” [BKPU16] which combine learning from
previous proofs with translation of the problems to the logics of automated systems
and reconstruction of the successfully found proofs. For many higher-order logic
developments a third of the proofs can be proved by a hammer in push-button
mode [BGK+16,KU14].

Even if the more advanced versions of type theory, as implemented by systems such
as Agda [BDN09], Coq [Ber08], Lean [dMKA+15], and Matita [ARS14], are gaining
popularity, there have been no hammers for such systems. This is because building
such a tool requires a usable encoding, and a strong enough proof reconstruction.

A typical use of a hammer is to prove relatively simple goals using available
lemmas. The problem is to find appropriate lemmas in a large collection of all
accessible lemmas and combine them to prove the goal. An example of a goal solvable
by our hammer, but not solvable by any standard Coq tactics, is the following.
forall (A : Type) (l1 l2 : list A) (x y1 y2 y3 : A),

In x l1 \/ In x l2 \/ x = y1 \/ In x (y2 :: y3 :: nil) ->
In x (y1 :: (l1 ++ (y2 :: (l2 ++ (y3 :: nil)))))

The statement asserts that if x occurs in one of the lists l1, l2, or it is equal to y1,
or it occurs in the list y2 :: y3 :: nil consisting of the elements y2 and y3, then
it occurs in the list
y1 :: (l1 ++ (y2 :: (l2 ++ (y3 :: nil))))

where ++ denotes list concatenation and :: denotes the list cons operator. Eprover al-
most instantly finds a proof of this goal using six lemmas from the module Lists.List
in the Coq standard library:
Lemma in_nil : forall (A : Type) (a : A), ~(In a nil).
Lemma in_inv : forall (A : Type) (a b : A) (l : list A),

In b (a :: l) -> a = b \/ In b l.
Lemma in_cons : forall (A : Type) (a b : A) (l : list A),

In b l -> In b (a :: l).
Lemma in_or_app : forall (A : Type) (l m : list A) (a : A),

In a l \/ In a m -> In a (l ++ m).
Lemma app_comm_cons : forall (A : Type) (x y : list A) (a : A),

a :: (x ++ y) = (a :: x) ++ y.
Lemma in_eq : forall (A : Type) (a : A) (l : list A), In a (a :: l).

The found ATP proof may be automatically reconstructed inside Coq.
The advantage of a hammer is that it is a general system not depending on

any domain-specific knowledge. The hammer plugin may use all currently accessible
lemmas, including those proven earlier in a given formalization, not only the lemmas
from the standard library or other predefined libraries.
Contributions. In this paper we present a comprehensive hammer for the Calculus of
Inductive Constructions together with an implementation for the Coq proof assistant.
In particular:
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– We introduce an encoding of the Calculus of Inductive Constructions, including
the additional logical constructions introduced by the Coq system, in untyped
first-order logic with equality.

– We implement the translation and evaluate it experimentally on the standard
library of the Coq proof assistant showing that the encoding is sufficient for a
hammer system for Coq: the success rates are comparable to those demonstrated
by hammer systems for Isabelle/HOL and Mizar, while the dependencies used in
the ATP proofs are most often sufficient to prove the original theorems.

– We present a proof reconstruction mechanism based on an eauto-type procedure
combined with some forward reasoning, congruence closure and heuristic rewriting.
Using this proof search procedure we are able to re-prove 44.5% of the problems
in the Coq standard library, using the dependencies extracted from the ATP
output.

– The three components are integrated in a plugin that offers a Coq automation
tactic hammer. We show case studies how the tactic can help simplify certain
existing Coq proofs and prove some lemmas not provable by standard tactics
available in Coq.

Preliminary versions of the translation and reconstruction components for a
hammer for Coq have been presented by us at HaTT 2016 [CK16]. Here, we improve
both, as well as introduce the other required components creating a first whole
hammer for a system based on the Calculus of Inductive Constructions.

The rest of this paper is structured as follows. In Section 2 we discuss existing
hammers for other foundations, as well as existing automation techniques for variants
of type theory including the Calculus of Constructions. In Section 3 we introduce
CIC0, an approximation of the Calculus of Inductive Constructions which will serve as
the intermediate representation for our translation. Section 4 discusses the adaptation
of premise selection to CIC0. The two main contribution follow: the translation to
untyped first-order logic (Section 5) and a mechanism for reconstructing in Coq
the proofs found by the untyped first-order ATPs 6. The construction of the whole
hammer and its evaluation is given in Section 7. Finally in Section 8 a number of
case studies of the whole hammer is presented.

2 Related Work

A recent overview [BKPU16] discusses the three most developed hammer systems,
large-theory premise selection, and the history of bridges between ITP and ATP
systems. Here we briefly survey the architectures of the three existing hammers and
their success rates on the various considered corpora, as well as discuss other related
automation techniques for systems based on the Calculus of (Inductive) Constructions.

2.1 Existing Hammers

Hammers are proof assistant tools that employ external automated theorem provers
(ATPs) in order to automatically find proofs of user given conjectures. Most devel-
oped hammers exist for proof assistants based on higher-order logic (Sledgeham-
mer [PB10] for Isabelle/HOL [WPN08], HOLyHammer [KU14] for HOL Light [Har09]
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and HOL4 [SN08]) or dependently typed set theory (MizAR [KU15c] for Mizar [Wie07,
BBG+15]). Less complete tools have been evaluated for ACL2 [JKU14]. There are
three main components of such hammer systems: premise selection, proof translation,
and reconstruction.

Premise Selection is a module that given a user goal and a large fact library,
predicts a smaller set of facts likely useful to prove that goal. It uses the statements
and the proofs of the facts for this purpose. Heuristics that use recursive similarity
include SInE [HV11] and the Meng-Paulson relevance filter [MP09], while the machine-
learning based algorithms include sparse naive Bayes [Urb04] and k-nearest neighbours
(k-NN) [KU13b]. More powerful machine learning algorithms perform significantly
better on small benchmarks [ACI+16], but are today too slow to be of practical use
in ITPs [FK15,KvLT+12].

Translation (encoding) of the user given conjecture together with the selected
lemmas to the logics and input formats of automated theorem provers (ATPs) is
the focus of the second module. The target is usually first-order logic (FOL) in the
TPTP format [Sut10], as the majority of the most efficient ATPs today support this
foundation and format. Translations have been developed separately for the different
logics of the ITPs. An overview of the HOL translation used in Sledgehammer is
given in [Bla12]. An overview of the dependently-typed set theory of MizAR is given
in [US10]. The automated systems are in turn used to either find an ATP proof or
just further narrow down the subset of lemmas to precisely those that are necessary
in the proof (unsatisfiable core).

Finally, information obtained by the successful ATP runs can be used to re-prove
the facts in the richer logic of the proof assistants. This is typically done in one
of the following three ways. First, by a translation of the found ATP proof to the
corresponding ITP proof script [PS07,BBF+15], where in some cases the script may
be even simplified to a single automated tactic parametrised by the used premises.
Second, by replaying the inference inside the proof assistant [BW10,KU13a,PS07].
Third, by implementing verified ATPs [AFG+11], usually with the help of code
reflection.

The general-purpose automation provided by the most advanced hammers is able
to solve 40–50% of the top-level goals in various developments [BKPU16], as well as
more than 70% of the user-visible subgoals [BGK+16].

2.2 Related Automation Techniques

The encodings of the logics of proof assistants based on the Calculus of Constructions
and its extensions in first-order logic have so far covered only very limited fragments
of the source logic [ACN05,TS98,BHdN02]. Why3 [FP13] provides a translation from
its own logic [Fil13] (which is a subset of the Coq logic, including features like rank-1
polymorphism, algebraic data types, recursive functions and inductive predicates) to
the format of various first-order provers (in fact Why3 has been initially used as a
translation back-end for HOLyHammer).

Certain other components of a hammer have already been explored for Coq. For
premise selection, we have evaluated the quality of machine learning advice [KMU14]
using custom implementations of Naive Bayes relevance filter, k-Nearest Neighbours,
and syntactic similarity based on the Meng-Paulson algorithm [MP09]. Coq Learning
Tools [Lau16] provides a user interface extension that suggests to the user lemmas
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that are most likely useful in the current proof using the above algorithms as well
as LDA. The suggestions of tactics which are likely to work for a given goal has
been attempted in ML4PG [KHG13], where the Coq Proof General [Asp00] user
interface has been linked with the machine learning framework Weka [HFH+09].
SEPIA [GWR15] tries to infer automata based on existing proofs that are able to
propose likely tactic sequences.

The already available HOL automation has been able to reconstruct the majority
of the automatically found proofs using either internal proof search [Hur03] or source-
level reconstruction. The internal proof search mechanisms provided in Coq, such
as the firstorder tactic [Cor03], have been insufficient for this purpose so far: we
will show this and discuss the proof search procedures of firstorder and tauto
in section 6. The jp tactic which integrates the intuitionistic first-order automated
theorem prover JProver [SLKN01] into Coq does not achieve sufficient reconstruction
rates either [CK16]. Matita’s ordered paramodulation [AT07] is able to reconstruct
many goals with up to two or three premises, and the congruence-closure based
internal automation techniques in Lean [dMS16] are also promising.

The SMTCoq [AFG+11] project has developed an approach to use external SAT
and SMT solvers and verify their proof witnesses. Small checkers are implemented
using reflection for parts of the SAT and SMT proof reconstruction, such as one for
CNF computation and one for congruence closure. The procedure is able to handle
Coq goals in the subset of the logic that corresponds to the logics of the input systems.

3 Type Theory Preliminaries

In this section we present our approximation CIC0 of the Calculus of Inductive Con-
structions, i.e., of the logic of Coq. The system CIC0 will be used as an intermediate
step in the translation, as well as the level at which premise selection is performed.
Note that CIC0 is interesting as an intermediate step in the translation, but is not a
sound type theory by itself (this will be discussed in Section 5.6). We assume the
reader to be familiar with the Calculus of Constructions [CH88] and to have a working
understanding of the type system of Coq [BC04,Coq16]. This section is intended
to fix notation and to precisely define the syntax of the formalism we translate to
first-order logic. The system CIC0 is intended as a precise description of the syntax
of our intermediate representation. It is a substantial fragment of the logic of Coq as
presented in [Coq16, Chapter 4], as well as of other systems based on the Calculus
of Constructions. The features of Coq not represented in the formalism of CIC0 are:
modules and functors, coinductive types, primitive record projections, and universe
constraints on Type.

The formalism of CIC0 could be used as an export target for other proof assistants
based on the Calculus of Inductive Constructions, e.g. for Matita or Lean. However,
in CIC0, like in Coq, Matita and Lean, there is an explicit distinction between
the universe of propositions Prop and the universe of sets Set or types Type. The
efficiency of our translation depends on this distinction: propositions are translated
directly to first-order formulas, while sets or types are represented by first-order
terms. For proof assistants based on dependent type theories which do not make
this distinction, e.g. Agda [BDN09] and Idris [Bra13], one would need a method to
heuristically infer which types are to be regarded as propositions, in addition to
possibly some adjustments to the formalism of CIC0.
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The language of CIC0 consists of terms and three forms of declarations. First, we
present the possible forms of terms of CIC0 together with a brief intuitive explanation
of their meaning. The terms of CIC0 are essentially simplified terms of Coq. Below
by t, s, u, τ , σ, ρ, κ, α, β, etc., we denote terms of CIC0, by c, c′, f , F , etc., we
denote constants of CIC0, and by x, y, z, etc., we denote variables. We use ~t for a
sequence of terms t1 . . . tn of an unspecified length n, and analogously for a sequence
of variables ~x. For instance, s~y stands for sy1 . . . yn, where n is not important or
implicit in the context. Analogously, we use λ~x : ~τ .t for λx1 : τ1.λx2 : τ2. . . . λxn : τn.t,
with n implicit or unspecified.

A term of CIC0 has one of the following forms.

– c. A constant.
– x. A variable.
– ts. An application.
– λx : t.s. A lambda-abstraction.
– Πx : t.s. A dependent product. If x does not occur free in s then we abbreviate
Πx : t.s by t→ s.

– case(t, c, n, λ~a : ~α.λx : c~p~a.τ, λ ~x1 : ~τ1.s1, . . . , λ ~xk : ~τk.sk). A case expression.
Here t is the term matched on, c is a constant such that

In(c : γ := c1 : γ1, . . . , ck : γk)

is an inductive declaration in the global environment (see the definition of inductive
declarations below for an explanation), the type of t has the form c~p~u, the integer n
denotes the number of parameters (which is the length of ~p), the type τ [~u/~a, t/x]
is the return type, i.e., the type of the whole case expression, ~a ∩ FV(~p) = ∅,
and si[~v/~xi] is the value of the case expression if the value of t is ci~p~v.

– fix(fi, f1 : t1 := s1, . . . , fn : tn := sn). A mutually recursive fixpoint definition.
The value of this is the function fi (where 1 ≤ i ≤ n) defined by si. The variables
f1, . . . , fn may occur in s1, . . . , sn. All functions are required to be terminating.

– let(x : t := s, u). A let-expression locally binding x of type t to s in u.
– cast(t, τ). A type cast: t is forced to have type τ .

We assume that the following special constants are among the constants of CIC0: Prop,
Set, Type, >, ⊥, ∀, ∃, ∧, ∨, ↔, ¬, =. We usually write ∀x : t.s and ∃x : t.s instead
of ∀t(λx : t.s) and ∃t(λx : t.s), respectively. For ∧, ∨ and ↔ we typically use infix
notation. We usually write t = s instead of = τst, omitting the type τ . The purpose of
having the logical primitives >,⊥,∀, ∃,∧,∨,↔,¬,= in CIC0 is to be able to directly
represent the Coq definitions of logical connectives. These primitives are used during
the translation. We directly export the Coq definitions and inductive types which
represent the logical connectives (the ones declared in the Init.Logic module), as
well as equality, to the logical primitives of CIC0. In particular, Init.Logic.all is
exported to ∀.

In CIC0 the universe constraints on Type present in the Coq logic are lost. This
is not dangerous in practice, because the ATPs are not strong enough to exploit the
resulting inconsistency. Proofs of paradoxes present in Coq’s standard library are
explicitly filtered-out by our plugin.

A declaration of CIC0 has one of the following forms.

– A definition c = t : τ . This is a definition of a constant c stating that c is
(definitionally) equal to t and it has type τ .
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– A typing declaration c : τ . This is a declaration of a constant c stating that it has
type τ .

– An inductive declaration Ik(c : τ := c1 : τ1, . . . , cn : τn) of c of type τ with k
parameters and n constructors c1, . . . , cn having types τ1, . . . , τn respectively. We
require τ ⇓ Π~y : ~σ.Π~y′ : ~σ′.s with s ∈ {Prop, Set,Type} and τi ⇓ Π~y : ~σ.~xi :
~αi.c~y ~ui for i = 1, . . . , n, where the length of ~y is k and a ⇓ b means that a
evaluates to b. Usually, we omit the subscript k when irrelevant or clear from the
context.
For instance, a polymorphic type of lists defined as an inductive type in Type
with a single parameter of type Type may be represented by

I1(List : Type→ Type :=
nil : (ΠA : Type.ListA),
cons : (ΠA : Type.A→ ListA→ ListA)).

Mutually inductive types may also be represented, because we do not require
the names of inductive declarations to occur in any specific order. For instance,
the inductive predicates even and odd may be represented by two inductive
declarations

I0(even : nat→ Prop :=
even 0 : even 0,
even S : Πn : nat.oddn→ even (Sn)).

I0(odd : nat→ Prop :=
odd S : Πn : nat.evenn→ odd (Sn)).

An environment of CIC0 is a set of declarations. We assume an implicit global envi-
ronment E. The environment E is assumed to contain appropriate typing declarations
for the logical primitives. A CIC0 context is a list of declarations of the form x : t
with t a term of CIC0 and x the declared CIC0 variable. We assume the variables
declared in a context are pairwise disjoint. We denote environments by E, E′, etc.,
and contexts by Γ , Γ ′, etc. We write Γ, x : τ to denote the context Γ with x : τ
appended. We denote the empty context by 〈〉. A type judgement of CIC0 has the
form Γ ` t : τ where Γ is a context and t, τ are terms. If Γ ` t : τ and Γ ` τ : σ then
we write Γ ` t : τ : σ. A Γ -proposition is a term t such that Γ ` t : Prop. A Γ -proof
is a term t such that Γ ` t : τ : Prop for some term τ .

The set FV(t) of free variables of a term t is defined in the usual way. To save
on notation we sometimes treat FV(t) as a list. For a context Γ which includes
declarations of all free variables of t, the free variable context FC(Γ ; t) of t is defined
inductively:

– FC(〈〉; t) = 〈〉,
– FC(Γ, x : τ ; t) = FC(Γ ;λx : τ.t), x : τ if x ∈ FV(t),
– FC(Γ, x : τ ; t) = FC(Γ ; t) if x /∈ FV(t).

If Γ includes declarations of all variables from a set of variables V , then we define
FFΓ (V ) to be the set of those y ∈ V which are not Γ -proofs. Again, to save on
notation we sometimes treat FFΓ (V ) as a list.

Our translation encodes CIC0 in untyped first-order logic with equality (FOL). We
also implemented a straightforward information-forgetting export of Coq declarations
into the syntax of CIC0. We describe the translation and the export in the next
section.
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In the translation of CIC0 we need to perform (approximate) type checking to
determine which terms are propositions (have type Prop), i.e. we need to check
whether a given term t in a given context Γ has type Prop. For this purpose we
implemented a specialised efficient procedure to do so. In fact, this procedure is slightly
incomplete. The point here is to approximately identify which types are intended to
represent propositions. In proof assistants or proof developments where types other
than those of sort Prop are intended to represent propositions the procedure needs
to be changed.

All CIC0 terms we are interested in correspond to typable (and thus strongly
normalizing) Coq terms, i.e., Coq terms are exported in a simple information-forgetting
way to appropriate CIC0 terms. We will assume that for any exported term there
exists a type in logic of Coq, it is unique, and it is preserved under context extension.
This assumption is not completely theoretically justified, but is useful in practice.

4 Premise selection

The first component of a hammer preselects a subset of the accessible facts most
likely to be useful in proving the user given goal. In this section we present the
premise selection algorithm proposed for a hammer for dependently typed theory.
We reuse the two most successful filters used in HOLyHammer [KU14] and Sledge-
hammer [BGK+16] adapted to the CIC0 representation of proof assistant knowledge.
We first discuss the features and labels useful for that representation and further
describe the k-NN and naive Bayes classifiers, which we used in our implementation.

4.1 Features and Labels

A simple possible characterization of statements in a proof assistant library is to use
the sets of symbols that appear in these statements. It is possible to extend this set
in many ways [KUV15], including various kinds of structure of the statements, types,
and normalizing variables (all variables will be replaced by a single symbol X). In the
case of CIC0, the constants are already both term constants and type constructors.
We omit the basic logical constants, as they will not be useful for automated theorem
provers which assume first-order logic. We further augment the set of features by
inspecting the parse tree: constants and constant-variable pairs that share an edge in
the parse tree give rise to a feature of the statement. We will denote such features of
a theorem T by F (T ).

For each feature f we additionally compute a feature weight w(f) that estimates
the importance of the feature. Based on the HOLyHammer experiments with feature
weights [KU15b], we use TF-IDF [Jon72] to compute feature weights. This ensures
that rare features are more important than common ones.

Like in usual premise selection, the dependencies of theorems will constitute the
labels for the learning algorithms. The dependencies for a theorem or definition T ,
which we will denote D(T ), are the constants occuring in the type of T or in the proof
term (or the unfolding) of T . Note that these dependencies may not be complete,
because in principle an ATP proof of T may need some additional information
that in Coq is incorporated into type-checking but not used to build proof terms,
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e.g. definitions of constants, facts which are necessary to establish types of certain
terms.

For example, consider the theorem T = Between.between le from the Coq
standard library with the statement:

forall k l, between k l -> k <= l.

In the section where this theorem is declared there is the following variable declaration:

Variable P : nat -> Prop.

The features and dependencies of T are:

F (T ) = { "Between.Between.between", "Between.Between.between-X",

"Coq.Init.Datatypes.nat", "Coq.Init.Peano.le",

"Coq.Init.Peano.le-X"}

D(T ) = { "Between.Between.between", "Between.Between.between ind",

"Coq.Init.Datatypes.nat", "Coq.Init.Peano.le",

"Coq.Init.Peano.le S", "Coq.Init.Peano.le n", "P"}

The -X features correspond to constants applied to variables. Similarly, in more
complex examples constant-constant applications (such as the successor of zero) give
rise to such compound features.

4.2 k-Nearest Neighbors

The k nearest neighbors classifier (k-NN) finds a given number k of accessible facts
which are most similar to the current goal. The distance for two statements a, b is
defined by the function (higher values means more similar, τ1 is a constant which
gives more similar statements an additional advantage):

s(a, b) =
∑

f∈F (a)∩F (b)
w(f)τ1

The dependencies of the selected facts will be used to estimate the relevance of
all accessible facts. Given the set of the k nearest neighbors N together with their
nearness values, the relevance of a visible fact a for the goal g is(

τ2
∑

b∈N |a∈D(b)

s(b, g)
|D(b)|

)
+
{
s(a, g) if a ∈ N
0 otherwise

where τ2 is a constant which gives more importance to the dependencies. We have
used the values τ1 = 6 and τ2 = 2.7 in our implementation, which were found
experimentally in our previous work [KU13b].

There are two modifications of the standard k-NN algorithm. First, when deciding
on the labels to predict based on the neighbors, we not only include the labels
associated with the neighbors based on the training examples (this corresponds to
past proofs) but also the neighbors themselves. This is because a theorem is in
principle provable from itself in zero steps, and this information is not included in
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the training data. Furthermore, theorems that have been proved, but have not been
used yet, would not be accessible to the algorithm without this modification.

Second, we do not use a fixed number k, instead we fix the number of facts with
non-zero relevance that need to be predicted. We start with k = 1 and if not enough
facts have been selected, we increase k iteratively. This allows creating ATP problems
of proportionate complexity.

4.3 Sparse Naive Bayes

The sparse naive Bayes classifier estimates the relevance of a fact a for a goal g by
the probability

P (a is used in the proof of g)

Since the goal is only characterized by its features, the probability can be further
estimated by:

P (a is used in a proof of s | s has features F (g))

where s is an arbitrary proved theorem, abstracting from the goal g.
For efficiency reasons the computation of the relevance of a is restricted to the

features of a and the features that were ever present when a was used as a dependency.
More formally, the extended features F (a) of a are:

F (a) = F (a) ∪
⋃

a∈D(b)

F (b)

The probability can be thus estimated by the statements s which have the features
F (g) but do not have the features F (a)− F (g):

P
(
a is used in a proof of s | F (a) ⊆ F (g) ∧ F (a) misses F (a)− F (g)

)
Assuming that the features are independent1 the Bayes’s rule can be applied to
transform the probability to the following product of probabilities:

P (a is used in the proof of s)

·
∏

f∈F (g)∩F (a)
P
(
s has feature f | a is used in the proof of s

)
·
∏

f∈F (g)−F (a)
P
(
s has feature f | a is not used in the proof of s

)
·
∏

f∈F (a)−F (g)
P
(
s does not have feature f | a is used in the proof of s

)
The expressions can be finally estimated:

P (a is used in a proof of s) = t(a)
K

P
(
s has feature f | a is used in the proof of s

)
= s(a, f)

t(a)
1 there are many dependencies among the features, however considering such dependenceis

makes premise selection very slow and gives little improvement both when it comes to machine
learning metrics and in practical hammer use [AHK+14].
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P
(
s does not have feature f | a is used in the proof of s

)
= 1− s(a, f)

t(a)

using two auxiliary functions that can be computed from the dependencies:

– s(a, f) is the number of times a has been a dependency of a fact characterized by
the feature f ;

– t(a) is the number of times a has been a dependency;

as well as the number K of all theorems proved so far.
In our actual implementation we further introduce minor modifications to avoid

any of the probabilities become zero and we estimate the logarithms of probabilities
to avoid multiplying small numbers which might cause numerical instability. The
classifier can finally estimate the relevance of all visible facts and return the requested
number of them that are most likely to lead to a successful proof of the conjecture.

5 Translation

In this section we describe a translation of Coq goals through CIC0 to untyped first-
order logic with equality. The translation presented here is a significantly improved
version of our translation presented at HaTT [CK16]. It has been made more complete,
many optimisations have been introduced, and several mistakes have been eliminated.

The translation is neither sound nor complete. In particular, it assumes proof
irrelevance (in the sense of erasing proof terms), it omits universe constraints on Type,
and some information is lost in the export to CIC0. However, it is sound and complete
“enough” to be practically usable by a hammer (just like the hammers for other
systems, it works very well for essentially first-order logic goals and becomes much
less effective with other features of the logics [BKPU16]). The limitations of the
translation and further issues of the current approach are explained in more detail in
Sections 5.6 and 9. Some similar issues were handled in the context of code extraction
in [Let04].

The translation proceeds in three phases. First, we export Coq goals to CIC0.
Next we translate CIC0 to first-order logic with equality. In the first-order language
we assume a unary predicate P , a binary predicate T and a binary function symbol @.
Usually, we write ts instead of @(t, s). Intuitively, an atom of the form P (t) asserts
the provability of t, and T (t, τ) asserts that t has type τ . In the third phase we
perform some optimisations on the generated FOL problem, e.g. replacing some terms
of the form P (cts) with c(t, s).

A FOL axiom is a pair of a FOL formula and a constant (label). We translate CIC0
to a set of FOL axioms. The labels are used to indicate which axioms are translations
of which lemmas. When we do not mention the label of an axiom, then the label is
not important.

5.1 Export of Coq data

The Coq declarations are exported in a straightforward way, translating Coq terms to
corresponding terms of CIC0, possibly forgetting some information like e.g. universe
constraints on Type. We implemented a Coq kernel plugin which exports the Coq
kernel data structures. We briefly comment on several aspects of the export.
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– Definitions are exported as CIC0 definitions.
– Axioms are exported as CIC0 typing declarations.
– Free variables (e.g. current hypotheses or variables from a currently open section)

are exported as CIC0 constants with appropriate typing declarations.
– Inductive types are exported as CIC0 inductive declarations. Induction principles

and recursor definitions are exported as separate CIC0 definitions.
– Coinductive types are treated in the same way as inductive types, except that no

induction principles or recursor definitions are exported for them.
– Mutual inductive types are exported separately for each constituent inductive

type. See Section 3.
– The Coq construct cofix is exported to fix in CIC0 with a special flag that

affects the evaluation algorithm. We omitted this flag from the description of CIC0
for the sake of simplicity.

– Modules and functors are not exported. Objects inside a module are exported
with the name of the module prefixed to the name of the object.

– Universe constraints on Type are not exported. Proofs of paradoxes present in
the standard library, e.g., Hurken’s paradox, are explicitly filtered out and not
exported.

– The following objects from the Init.Logic module are represented directly by
the corresponding logical primitives of CIC0: True, False, all, ex, and, or, iff,
eq. No other objects from the Init.Logic module are exported.

– Records are translated to inductive types already by Coq. Primitive record
projections are not supported by our plugin.

– Existential metavariables are not exported. Currently it is not possible to use
the hammer plugin when the proof state contains some uninstantiated existential
metavariables.

The limitations of the translation, including these stemming from the incom-
pleteness of the export as well as of the current architecture will be discussed in
Sections 5.6 and 9.

5.2 Translating terms

The terms of CIC0 are translated using three mutually recursively defined functions F ,
G and C. The function F encodes propositions as FOL formulas and is used for terms
of CIC0 having type Prop, i.e., for propositions of CIC0. The function G encodes
types as guards and is used for terms of CIC0 which have type Type but not Prop.
The function C encodes CIC0 terms as FOL terms. During the translation we add
some fresh constants together with axioms (in FOL) specifying their meaning. Hence,
strictly speaking, the codomain of each of the functions F , G and C is the Cartesian
product of the set of FOL formulas (or terms) – the desired encoding – and the
powerset of the set of FOL formulas – the set of axioms added during the translation.
However, it is more readable to describe the functions assuming a global mutable
collection of FOL axioms.

Our translation assumes proof irrelevance. We use a fresh constant prf to represent
an arbitrary proof object (of any inhabited proposition). For the sake of efficiency,
CIC0 propositions are translated directly to FOL formulas using the F function.
The CIC0 types which are not propositions are translated to guards which essentially
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specify what it means for an object to have the given type. The formula G(t, α)
intuitively means “t has type α”. For instance, for a (closed) type τ = Πx : α.β we
have

G(f, τ) = ∀x.G(x, α)→ G(fx, β)

So G(f, τ) says that an object f has type τ = Πx : α.β if for any object x of type α,
the application fx has type β (in which x may occur free).

Below we give definitions of the functions F , G and C. These functions are in fact
parameterised by a CIC0 context Γ , which we write as a subscript. In the description
of the functions we implicitly assume that variable names are chosen appropriately
so that no unexpected variable capture occurs. Also we assume an implicit global
environment E. This environment is used for type checking. The typing declarations
for CIC0 logical primitives, as described in the previous section, are assumed to be
present in E. During the translation also some new declarations are added to the
environment. We assume all CIC0 constants are also FOL constants, and analogously
for variables. We use the notation t1 ≈Γ t2 for t1 ↔ t2 if Γ ` t1 : Prop, or for t1 = t2
if Γ 0 t1 : Prop.
The function F encoding propositions as FOL formulas:

– If Γ ` t : Prop then FΓ (Πx : t.s) = FΓ (t)→ FΓ,x:t(s).
– If Γ 6` t : Prop then FΓ (Πx : t.s) = ∀x.GΓ (x, t)→ FΓ,x:t(s).
– FΓ (∀x : t.s) = ∀x.GΓ (x, t)→ FΓ,x:t(s).
– FΓ (∃x : t.s) = ∃x.GΓ (x, t) ∧ FΓ,x:t(s).
– FΓ (t ◦ s) = FΓ (t) ◦ FΓ (s) where ◦ ∈ {∧,∨,↔}.
– FΓ (¬t) = ¬FΓ (t).
– FΓ (t = s) = (CΓ (t) = CΓ (s)).
– Otherwise, if none of the above apply, FΓ (t) = P (CΓ (t)).

The function G encoding types as guards:

– If w = Πx : t.s and Γ ` t : Prop then

GΓ (u,w) = FΓ (t)→ GΓ,x:t(u, s).

– If w = Πx : t.s and Γ 6` t : Prop then GΓ (u,w) = ∀x.GΓ (x, t)→ GΓ,x:t(ux, s).
– If w is not a product then GΓ (u,w) = T (u, CΓ (w)).

The function C encoding terms as FOL terms:

– CΓ (c) = c for a constant c,
– CΓ (x) = x for a variable x if x is not a Γ -proof,
– CΓ (x) = prf for a variable x if x is a Γ -proof,
– CΓ (ts) is equal to:

– prf if CΓ (t) = prf,
– CΓ (t) if CΓ (t) 6= prf but CΓ (s) = prf,
– CΓ (t)CΓ (s) otherwise.

– CΓ (Πx : t.s) = R~y for a fresh constant F where ~y = FFΓ (FC(Γ ;Πx : t.s)) and
– if Γ ` (Πx : t.s) : Prop then ∀~y.P (F~y)↔ FΓ (Πx : t.s) is a new axiom,
– if Γ 6` (Πx : t.s) : Prop then ∀~yz.T (z, F~y)↔ GΓ (z,Πx : t.s) is a new axiom.

– CΓ (λ~x : ~τ .t) = F ~y0 for a fresh constant F where
– t does not start with a lambda-abstraction any more,
– Γ, ~x : ~τ ` t : α,
– ~y : ~ρ = FC(Γ ;λ~x : ~τ .t),
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– ~y0 = FFΓ (~y) and ~x0 = FFΓ,~x:~τ (~x),
– the typing declaration F : Π~y : ~ρ.Π~x : ~τ .α is added to the global environ-

ment E (before the recursive call to FΓ below),
– the following is a new axiom:

∀~y0 ~x0.FΓ,~x:~τ (F~y~x ≈Γ,~x:~τ t).

Note that the call to F will remove those variable arguments to F which are
Γ, ~x : ~τ -proofs. Hence, ultimately F will occur as F ~y0 ~x0 in the above axiom.

– If t is a Γ -proof then

CΓ (case(t, c, n, λ~a : ~α.λx : c~p~a.τ, λ ~x1 : ~τ1.s1, . . . , λ ~xk : ~τk.sk)) = C

for a fresh constant C.
– If t is not a Γ -proof then

CΓ (case(t, c, n, λ~a : ~α.λx : c~p~a.τ, λ ~x1 : ~τ1.s1, . . . , λ ~xk : ~τk.sk)) = F ~y0

for a fresh constant F where
– I(c : γ := c1 : γ1, . . . , ck : γk) ∈ E,
– ~y : ~ρ = FC(Γ ; case(t, c, n, λ~a : ~α.λx : c~p~a.τ, λ ~x1 : ~τ1.s1, . . . , λ ~xk : ~τk.sk)),
– ~y0 = FFΓ (~y),
– ~y1 : ~ρ1 = FC(Γ ; t),
– Γ ` t : c~p~u for some terms ~u,
– the declaration F : Π~y : ~ρ.τ [~u/~a, t/x] is added to the global environment E,
– the following is a new axiom:

∀~y0.guards ~y1: ~ρ1 (FΓ (( ∃ ~x1 : ~τ1.t = c1~p ~x1 ∧ F~y ≈Γ, ~x1:~τ1 s1)
∨ . . .
∨ (∃ ~xk : ~τk.t = ck~p ~xk ∧ F~y ≈Γ, ~xk: ~τk

sk)))

where for a FOL formula ϕ and a context Γ we define guardsΓ (ϕ) inductively
as follows:
• guards〈〉(ϕ) = ϕ,
• guardsΓ,x:τ (ϕ) = guardsΓ (FΓ (τ)→ ϕ) if Γ ` τ : Prop,
• guardsΓ,x:τ (ϕ) = guardsΓ (GΓ (x, τ)→ ϕ) if Γ 0 τ : Prop.

– CΓ (fix(fj , f1 : τ1 := t1, . . . , fn : τn := tn)) = Fj ~y0 where
– ~y : ~α = FC(Γ ; fix(fj , f1 : τ1 := t1, . . . , fn : τn := tn)),
– ~y0 = FFΓ (~y),
– F1, . . . , Fn are fresh constants,
– for i = 1, . . . , n the typing declarations Fi : Π~y : ~α.τi are added to the global

environment E,
– for i = 1, . . . , n the following are new axioms:

∀~y0.FΓ (Fi~y ≈Γ ti[F1~y/f1, . . . , Fn~y/fn]).

– CΓ (let(x : τ := t, s)) = CΓ (s[F ~y0/x]) for a fresh constant F where
– ~y : ~α = FC(Γ ; tτ),
– ~y0 = FFΓ (~y),
– σ = Π~y : ~α.τ ,
– the definition F = (λ~y : ~α.t) : σ is added to the global environment E (before

the recursive call to CΓ above),
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– if 0 σ : Prop then ∀~y0.F ~y0 = CΓ (t) is a new axiom.
– CΓ (cast(prf, τ)) = prf.
– If t 6= prf then CΓ (cast(t, τ)) = F ~y0 for a fresh constant F where

– ~y : ~α = FC(Γ ; tτ),
– ~y0 = FFΓ (~y),
– σ = Π~y : ~α.τ ,
– the definition F = (λ~y : ~α.t) : σ is added to the global environment E,
– if 0 σ : Prop then ∀~y0.F ~y0 = CΓ (t) is a new axiom.

Example 1 A CIC0 proposition

t = Πx : N.Πf : α→ N → N.Πq : α.fqx = x

in the context

Γ = N : Type, α : Prop

is translated to

FΓ (t) = ∀x.T (x,N)→ ∀f.(P (α)→ ∀y.T (y,N)→ T (fy,N))→ P (α)→ fx = x.

In practice, checking the conditions Γ ` t : Prop is performed by our specialised
approximate proposition-checking algorithm. Checking whether a term t is a Γ -proof
occurs in two cases.

1. t is the term matched on in a case-expression case(t, c, . . .). Then there is an
inductive declaration In(c : γ := . . .) in the global environment. We check if the
normal form of γ has target Prop.

2. t = x is a variable. Then we check if the type assigned to x by the context Γ is a
proposition.

We write ϕ(σ) to denote that a FOL formula ϕ has σ as a subformula. Then
ϕ(σ′) denotes the formula ϕ with σ replaced by σ′. We use an analogous notation
when σ is a FOL term instead of a formula.

Note that each new axiom defining a constant F intended to replace (“lift-out”)
a λ-abstraction, a case expression or a fixpoint definition has the form

∀~x.ϕ(F~x = t)

or

∀~x.ϕ(P (F~x)↔ ψ).

We will call each such axiom the lifting axiom for F . For lambda abstractions, this is
equivalent to lambda-lifing, which is a common technique used by hammers for HOL
and Mizar. In CIC0 however other kinds of terms do bind variables (for example
case and fix) and lifting axioms need to be created for such terms as well.
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5.3 Translating declarations

Declarations of CIC0 are encoded as FOL axioms. As before, a global CIC0 envi-
ronment E is assumed. During the translation of a declaration the functions F , G
and C from the previous subsection are used. These functions may themselves add
some FOL axioms, which are then also included in the result of the translation of the
declaration. We proceed to describe the translation for each of the three forms of CIC0
declarations. Whenever we write F , G, C without subscript, the empty context 〈〉 is
assumed as the subscript.

A definition c = t : τ is translated as follows.

– If ` τ : Prop then add F(τ) as a new axiom with label c.
– If 0 τ : Prop then

– add G(c, τ) as a new axiom,
– if τ = Prop then add c↔ F(t) as a new axiom with label c,
– if τ = Set or τ = Type then add ∀f.cf ↔ G(f, t) as a new axiom with label c,
– if τ /∈ {Prop,Set,Type} then add c = C(t) as a new axiom with label c.

A typing declaration c : τ is translated as follows.

– If ` τ : Prop then add F(τ) as a new axiom with label c.
– If 0 τ : Prop then add G(c, τ) as a new axiom with label c.

An inductive declaration I(c : τ := c1 : τ1, . . . , cn : τn) is translated as follows,
where τ ⇓ Π~p : ~β.Π~y : ~γ.s and s ∈ {Prop,Set,Type} and ~β are the types of the
parameters of the inductive type and τi ⇓ Π~p : ~β.Π ~xi : ~αi.c~p~ti and the length of ~y
and each ~ti is m.

– Translate the typing declaration c : τ .
– Translate each typing declaration ci : τi for i = 1, . . . , n.
– If s 6= Prop then for each i = 1, . . . , n add the following injectivity axiom:

F(∀~xi : ~αi.∀~xi′ : ~αi′.ci ~xi = ci ~xi
′ → xi,1 = x′i,1 ∧ . . . ∧ xi,ki = x′i,ki

)

where ~αi′ = ~αi[~xi′/~xi].
– If s 6= Prop then for each i, j = 1, . . . , n with i 6= j add the following discrimination

axiom:
F(∀~xi : ~αi.∀ ~xj : ~αj .ci ~xi 6= cj ~xj).

– If s 6= Prop then add the following inversion axiom:

F(∀~p : ~β.∀~y : ~γ.∀z : c~p~y . (∃ ~x1 : ~α1.z = c1~p ~x1 ∧ y1 = t1,1 ∧ . . . ∧ ym = t1,m)
∨ . . .
∨ (∃ ~xn : ~αn.z = cn~p ~xn ∧ y1 = tn,1 ∧ . . . ∧ ym = tn,m)).

– If s = Prop then add the following inversion axiom:

F(∀~p : ~β.∀~y : ~γ.c~p~y → (( ∃ ~x1 : ~α1.y1 = t1,1 ∧ . . . ∧ ym = t1,m)
∨ . . .
∨ (∃ ~xn : ~αn.y1 = tn,1 ∧ . . . ∧ ym = tn,m))).
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5.4 Translating problems

A CIC0 problem consists of a set of assumptions which are CIC0 declarations, and
a conjecture which is a CIC0 proposition. A CIC0 problem is translated to a FOL
problem by translating the assumptions to FOL axioms in the way described in the
previous subsection, and translating the conjecture t to a FOL conjecture F(t). New
declarations added to the environment during the translation are not translated.
For every CIC0 problem the following FOL axioms are added to the result of the
translation:

– T (Prop,Type), T (Set,Type), T (Type,Type),
– ∀y.T (y,Set)→ T (y,Type).

5.5 Optimisations

We perform the following optimisations on the generated FOL problems, in the
given order. Below, by an occurrence of a term t (in the FOL problem) we mean an
occurrence of t in the set of FOL formulas comprising the given FOL problem.

– We recursively simplify the lifting axioms for the constants encoding λ-abstractions,
case expressions and fixpoint definitions. For any lifting axiom A for a constant F ,
if A has the form

∀~x.ϕ(F~x = G~x)

such that G has a lifting axiom B

∀~x∀~y.ψ(G~x~y = t)

and either ϕ(�) = � or ~y is empty, then we replace the axiom A by

∀~x.ϕ(∀~y.ψ(F~x~y = t))

and we remove the axiom B and replace all occurrences of G by F . When in the
lifting axioms A and B we have logical equivalence ↔ instead of equality =, then
we adjust the replacement of A appropriately, using ↔ instead of =. We repeat
applying this optimisation as long as possible.

– For a constant c, we replace any occurrence of T (s, ct1 . . . tn) by cT (t1, . . . , tn, s)
where cT is a new function symbol of arity n+ 1. We then also add a new axiom:

∀x1 . . . xny.cT (x1, . . . , xn, y)↔ T (y, cx1 . . . xn).

Note that after performing this replacement the predicate T may still occur in
the FOL problem, e.g., a term T (s, xt1 . . . tn) may occur. This optimisation is
useful, because it simplifies the FOL terms and replaces the T predicate with a
specialised predicate for a constant. This makes it easier for the ATPs to handle
the problem.

– For each occurrence of a constant c with n > 0 arguments, i.e., each occurrence
ct1 . . . tn where n > 0 is maximal (there are no further arguments), we replace
this occurrence with cn(t1, . . . , tn) where cn is a new n-ary function symbol. We
then also add a new axiom:
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– ∀x1 . . . xn.P (cn(x1, . . . , xn))↔ P (cx1 . . . xn) if (after replacement of all such
occurrences) all terms of the form cn(t1, . . . , tn) occur only as arguments of
the predicate P , i.e., occur only as in P (cn(t1, . . . , tn)).

– ∀x1 . . . xn.c
n(x1, . . . , xn) = cx1 . . . xn otherwise.

This optimisation is similar to the optimisation originally described by Meng and
Paulson in [MP08, Section 2.7].

– For any constant c and n > 0, if all terms of the form cn(t1, . . . , tn) occur
only as arguments of P , then replace each occurrence of a term of the form
P (cn(t1, . . . , tn)) by cn(t1, . . . , tn).

5.6 Properties of the translation

In this section we briefly comment on the theoretical aspects of the translation. Further
limitations of the whole approach will be mentioned in Section 9. The translation
is neither sound nor complete. The lack of soundness is caused e.g. by the fact that
we forget universe constraints on Type, the assumption of proof irrelevance, and
the combination of omitting type guards for lifted-out lambda-abstractions with
translating Coq equality to FOL equality. However, our experimental evaluation
indicates that the translation is both sound and complete “enough” to be practically
usable. Also, a “core” version of our translation is sound. A soundness proof and
a more detailed discussion of the theoretical properties of a core version of our
translation may be found in [Cza16].

Note that e.g. in the axiom added for lifted-out lambda-abstractions

∀~y0 ~x0.FΓ,~x:~τ (F~y~x ≈Γ,~x:~τ t)

we do not generate type guards for the free (~y0) or bound ( ~x0) variables of the lambda-
expression. In practice, omitting these guards slightly improves the success rate of
the ATPs without significantly affecting the reconstruction success rate. We conjecture
that, ignoring other unsound features of the translation, omitting these guards is
sound provided that the inductive Coq equality type eq is not translated to FOL
equality. Note also that it is not sound (and our translation does not do it) to omit
guards for the free variables of the term matched on in the case construct, even if Coq
equality is not translated to FOL equality. For example, assume I0(c : Set := c0 : c)
is in the global environment. With the guards omitted, for the case-expression
case(x, c, 0, c, c0) we would add an axiom

∀x.x = c0 ∧ Fx = c0

with F a fresh first-order constant. This obviously leads to an inconsistency by
substituting for x two distinct constants c1, c2 such that c1 6= c2 is provable.

In our translation we map Coq equality to FOL equality which is not sound in
combination with omitting the guards for free variables. In particular, if a CIC0
problem contains a functional extensionality axiom then the generated FOL problem
may be inconsistent, and in contrast to the inconsistencies that may result from
omitting certain universe constraints, this inconsistency may be “easy enough” for
the ATPs to derive. Our plugin has an option to turn on guard generation for free
variables. See also [Cza16, Section 6].
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6 Proof reconstruction

In this section we will discuss a number of existing Coq internal automation mecha-
nisms that could be useful for proof reconstruction and finally introduce our combined
proof reconstruction tactic.

The tactic firstorder is based on an extension of the contraction-free sequent
calculus LJT of Dyckhoff [Dyc92] to first-order intuitionistic logic with inductive
definitions [Cor03]. A decision procedure for intuitionistic propositional logic based
on the system LJT is implemented in the tactic tauto. The tactic firstorder does
not take into account many features of Coq outside of first-order logic. In particular,
it does not fully axiomatise equality.

In general, the tactics based on extensions of LJT do mostly forward reasoning, i.e.,
they predominantly manipulate the hypotheses in the context to finally obtain the goal.
Our approach is based more on an auto-type proof search which does mostly backward
Prolog-style reasoning – modifying the goal by applying hypotheses from the context.
The core of our search procedure may be seen as an extension of the Ben-Yelles
algorithm [BY79,Hin97] to first-order intuitionistic logic with all connectives [Urz16,
ZS16]. It is closely related to searching for η-long normal forms [BD05,Dow93]. Our
implementation extends this core idea with various heuristics. We augment the proof
search procedure with the use of existential metavariables like in eauto, a looping
check, some limited forward reasoning, the use of the congruence tactic, and heuristic
rewriting using equational hypotheses.

It is important to note that while the external ATPs we employ are classical and
the translation assumes proof irrelevance, the proof reconstruction phase does not
assume any additional axioms. We re-prove the theorems in the intuitionistic logic of
Coq, effectively using the output of the ATPs merely as hints for our hand-crafted
proof search procedure. Therefore, if the ATP proof is inherently classical then proof
reconstruction will fail. Currently, the only information from ATP runs we use is
a list of lemmas needed by the ATP to prove the theorem (these are added to the
context) and a list of constant definitions used in the ATP proof (we try unfolding
these constants and no others).

Another thing to note is that we do not use the information contained in the Coq
standard library during reconstruction. This would not make sense for our evaluation
of the reconstruction mechanism, since we try to re-prove the theorems from the
Coq standard library. In particular, we do not use any preexisting hint databases
available in Coq, not even the core database (for the evaluation we use the auto and
eauto tactics with the nocore option, but in the final version of the reconstruction
tactics we also use auto without this option). Also, we do not use any domain-specific
decision procedures available as Coq tactics, e.g., field, ring or omega. Including
such techniques in HOLyHammer did allow fast solving of many simple arithmetic
problems [KU15a].

We now describe a simplification of our proof search procedure. We will treat
the current proof state as a collection of judgements of the form Γ ` G and describe
the rules as manipulating a single such judgement. In a judgement Γ ` G the term
G is the goal and Γ is the context which is a list of hypothesis declarations of the
form H : A. We use an informal notation for Coq terms similar to how they are
displayed by Coq. For instance, by ∀x : A,B we denote a dependent product. We
write ∀x,B when the type of x is not essential. Note that in ∀x,B the variable x
may be a proposition, so ∀x,B may actually represent a logical implication A→ B
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if A is the omitted type of x which itself has type Prop and x does not occur in B.
To avoid confusion with = used to denote the equality inductive predicate in Coq, we
use ≡ as a metalevel symbol to denote identity of Coq terms. We use the notation
Γ ;H : A to denote Γ with H : A inserted at some fixed position. By Γ,H : A we
denote the context Γ with H : A appended. We omit the hypothesis name H when
irrelevant. By C[t] we denote an occurrence of a term t in a term context C.

The proof search procedure applies the rules from Figure 1. An application of a
rule of the form

Γ1 ` G1 . . . Γn ` Gn
Γ ` G

replaces a judgement Γ ` G in the current proof state by the judgements Γ1 ` G1,
. . . , Γn ` Gn. The notation tac[Γ ` G] (resp. tac(A)[Γ ` G]) in a rule premise
means applying the Coq tactic tac (with argument A) to the judgement Γ ` G and
making the judgements (subgoals) generated by the tactic be the premises of the rule.
In a rule of the form e.g.

Γ ;A′ ` G
Γ ;A ` G

the position in Γ at which A is inserted is implicitly assumed to be the same as the
position at which A′ is inserted.

In Figure 1 the variables ?ei, ?e denote fresh existential metavariables of appro-
priate types. These metavariables need to be instantiated later by Coq’s unification
algorithm. In the rules (orsplit) and (exsimpl) the types of x1, . . . , xn are assumed not
to be propositions. In the rule (exinst) the types of x1, . . . , xk are not propositions and
either k = n or the type of xk+1 is a proposition. In the rule (orinst) the xi1 , . . . , xim
are all those among x1, . . . , xn for which Ti1 , . . . , Tim are not propositions; and the
index k ranges over all k ∈ {1, . . . , n} \ {i1, . . . , im} (so that each Tk is a proposition)
– all judgements for any such k are premises of the rule, not just a single one. More-
over, in these rules for any term T by T ′ we denote T [?ei1/xi1 , . . . , ?eim/xim ], and
Tj1 , . . . , Tjm:k are those among T1, . . . , Tk which are propositions. In the (apply) and
(invert) rules P is an atomic proposition, i.e., a proposition which is not a dependent
product, an existential, a disjunction or a conjunction. In the (destruct) rule T is not
a proposition.

The tactic yapply in rule (apply) works like eapply except that instead of simply
unifying the goal with the target of the hypothesis, it tries unification modulo some
simple equational reasoning. The idea of the yapply tactic is broadly similar to the
smart matching of Matita [AT10], but our implementation is more heuristic and not
based on superposition.

The tactic yrewrite in rule (rewrite) uses Coq’s tactic erewrite to try to rewrite
the hypothesis in the goal. If it fails to rewrite it directed from left to right, then it
tries the other direction.

The rules in Figure 1 are divided into groups. The rules in each group are either
applied with backtracking (marked by (b) in the figure), i.e., if applying one of the
rules in the group to a judgement Γ ` G does not ultimately succeed in finishing
the proof then another of the rules in the group is tried on Γ ` G; or they are
applied eagerly without backtracking (marked by (e) in the figure). There are also
restrictions on when the rules in a given group may be applied. The rules in the group
“Leaf tactics” must close a proof tree branch, i.e., they are applied only when they
generate zero premises. The rules in the group “Final splitting” are applied only before
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the “leaf tactics”. The rules in the groups “Splitting”, “Hypothesis simplification”
and “Introduction” are applied whenever possible. The rules in the group “Proof
search” constitute the main part of the proof search procedure. They are applied
only when none of the rules in the groups “Splitting”, “Hypothesis simplification”
and “Introduction” can be applied. The rules in the group “Initial proof search” may
only be applied after an application of (intro) followed by some applications of the
rules in the “Splitting” and “Hypothesis simplification” groups. They are applied
only if none of the rules in the groups “Splitting”, “Hypothesis simplification” and
“Introduction” can be applied.

The above description is only a readable approximation of what is actually
implemented. Some further heuristics are used and more complex restrictions are
put on what rules may be applied when. In particular, some loop checking (checking
whether a judgement repeats) is implemented, the number of times a hypothesis may
be used for rewriting is limited, and we also use heuristic rewriting in hypotheses and
heuristic instantiation of universal hypotheses. Some heuristics we use are inspired
by the crush tactic of Adam Chlipala [Chl13].

As mentioned before, our proof search procedure could be seen as an extension
of a search for η-long normal forms for first-order intuitionistic logic using a Ben-
Yelles-type algorithm [Urz16,ZS16]. As such it would be complete for the fragment
of type theory “corresponding to” first-order logic, barring two simplifications we
introduced to make it more practical. For the sake of efficiency, we do not backtrack on
instantiations of existential metavariables solved by unification, and the rules (exinst)
and (orinst) are not general enough. These cause incompleteness even for the first-
order fragment, but this incompleteness does not seem to matter much in practice.
The usual reasons why proof reconstruction fails is that either the proof is inherently
classical, too deep, or uses too much rewriting which cannot be easily handled by our
rewriting heuristics. It is left for future work to integrate rewriting into our proof
search procedure in a more principled way.

The proof reconstruction phase in the hammer tactic uses a number of tactics
derived from the procedure described above, with different depth limits, a bit different
heuristics and rule application restrictions; plus a few other tactics, including Coq’s
intuition, simpl, subst, and heuristic constant unfolding. Various reconstruction
tactics are tried in order with a time limit for each, until one of them succeeds (or
none succeed – then the proof cannot be reconstructed).

It is important to note that no time limits are supposed to be present in the
final proof scripts. The CoqHammer plugin shows which of the tactics succeeded,
and the user is supposed to copy this tactic, replacing the hammer tactic invocation.
The final reconstruction tactic does not rely on any time limits or make any calls to
external ATPs. Its results are therefore completely reproducible on different machines,
in contrast to the main hammer tactic itself.

7 Integrated Hammer and Evaluation

In this section we present the technique used to select the combination of strategies
included in the integrated hammer and present an evaluation of the components as
well as the final offered strategy.

The evaluation in this section will perform a push-button re-proving of Coq
problems without using their proofs. In order for the evaluation of the system to be
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eauto[Γ ` G]
Γ ` G

congruence[Γ ` G]
Γ ` G

constructor[Γ ` G]
Γ ` G

easy[Γ ` G]
Γ ` G

Leaf tactics (b)

Γ ;A[?e1/x1, . . . , ?en/xn] ` G Γ ;B[?e1/x1, . . . , ?en/xn] ` G

Γ ; ∀x1 . . . xn, A ∨B ` G
(orsplit)

Γ ;A[?e1/x1, . . . , ?en/xn] ` G y fresh
Γ ; ∀x1 . . . xn,∃y,A ` G

(exsimpl)

Final splitting (e)

destruct(t)[Γ ` C[match t with b]]
Γ ` C[match t with b]

destruct(t)[Γ ;C[match t with b] ` G]
Γ ;C[match t with b] ` G

Γ ` G1 Γ ` G2
Γ ` G1 ∧G2

Splitting (e)

Γ ;A;B ` G

Γ ;A;A → B ` G

Γ ; ∀x1 . . . xn, A; ∀x1 . . . xn, B ` G

Γ ; ∀x1 . . . xn, A ∧B ` G

Γ ; ∀x1 . . . xn, A → B → C ` G

Γ ; ∀x1 . . . xn, A ∧B → C ` G

Γ ; ∀x1 . . . xn, A → C; ∀x1 . . . xn, B → C ` G

Γ ; ∀x1 . . . xn, A ∨B → C ` G

Γ ;A ` G x fresh
Γ ; ∃x,A ` G

Γ ;A ` G

Γ ;A;A ` G

Hypothesis simplification (e)

Γ ;x : A ` B

Γ ` ∀x : A,B
(intro)

Introduction (e)

Γ ; False ` G Γ ;G ` G

Γ ` G[?e/x]
Γ ` ∃x,G

Γ ` G1
Γ ` G1 ∨G2

Γ ` G2
Γ ` G1 ∨G2

yapply(H)[Γ ;H : A ` P ]
Γ ;H : A ` P

(apply)
yrewrite(H)[Γ ;H : ∀x1 . . . xn, A = B ` G]

Γ ;H : ∀x1 . . . xn, A = B ` G
(rewrite)

Γ ; ∀xk+1 . . . xn,∃x,A[?e1/x1, . . . , ?ek/xk] ` G

Γ ; ∀x1 . . . xk . . . xn, ∃x,A ` G
(exinst)

Γ ;T ′
j1
, . . . , T ′

jm:n
, A′

1 ` G Γ ;T ′
j1
, . . . , T ′

jm:n
, A′

2 ` G Γ ;T ′
j1
, . . . , T ′

jm:k−1
` T ′

k

Γ ; ∀(x1 : T1) . . . (xn : Tn), A1 ∨A2 ` G
(orinst)

Proof search (b)

Γ ; ∀x1 . . . xn,False ` False
Γ ; ∀x1 . . . xn,False ` G

inversion(H)[Γ ;H : P ` G]
Γ ;H : P ` G

(invert)
destruct(x)[Γ ;x : T ` G]

Γ ;x : T ` G
(destruct)

Initial proof search (b)

Fig. 1 Simplified proof search rules
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fair, we need ensure that no information from a proof is used in its re-proving, as
well as that the actual strategy that is used by the whole system has been developed
without the knowledge of the proofs being evaluated.

The system will be evaluated on the problems generated from all theorems in
the Coq standard library of Coq version 8.5 (a version of the plugin works with
Coq 8.6 and 8.7 as well). The problems were generated from the source code of the
library, counting as theorems all definitions (introduced with any of Lemma, Theorem,
Corollary, Fact, Instance, etc.) that were followed by the Proof keyword. The
source code of the library was then modified to insert a hook to our hammer plugin
after each Proof keyword. The plugin tries to re-prove the theorem using the Coq
theorems accessible at the point when the statement of the theorem is introduced,
using the three phases of premise selection, ATP invocation and proof reconstruction
as described above.

This simulates how a hammer would be used in the development of the Coq
standard library. In particular, when trying to re-prove a given theorem we use only
the objects accessible in the Coq kernel at the moment the theorem statement is
encountered by Coq. Of course, neither the re-proved theorem itself nor any theorems
or definitions that depend on it are used. The number of problems obtained by
automatically analysing the Coq standard library source code in the way described
above is 9276. This differs significantly from the number of problems reported
in [CK16]. There the theorems in the Coq standard library were extracted from
objects of type Prop in the Coq kernel. Because of how the Coq module system works,
there may be many Coq kernel objects corresponding to one definition in a source
file (this is the case e.g. when using the Include command).

Furthermore, the problems are divided in a training set consisting of about 10%
of the problems in the standard library and a validation set containing the remaining
90% of the problems. The training set is used to find a set of complementary strategies.
Just like for the hammers for higher-order logic based systems and for Mizar a single
best combination of the premise-selection algorithm, number of selected premises,
and ATP run for a longer time is much weaker than running a few such combinations
even for a shorter time. Contrary to existing hammer constructions [KU14,KU15c],
we decided to include the reconstruction mechanism among the considered strategy
parameters since generally reconstruction rates are lower and it could happen that
proofs originating from a particular prover and number of premises would be too
hard to reconstruct.

In our evaluation we used the following ATPs: E Prover version 1.9 [Sch13],
Vampire version 4.0 [KV13] and Z3 version 4.0 [dMB08]. The evaluation was performed
on a 48-core server with 2.2GHz AMD Opteron CPUs and 320GB RAM. Each problem
was always assigned one CPU core. The two considered premise selection algorithms
were asked for an ordering of premises, and all powers of two between 16 and 1024
were considered. Finally we considered both firstorder and hrecon reconstruction.
Having evaluated all combinations of premise selection algorithms we ordered them
in a greedy sequence: each following strategy is the one that adds most to the
current selection of strategies. The first 14 strategies in the greedy sequence are
presented in Table 1. The column “Solved” indicates the number of problems that
were successfully solved by the given ATP with the given premise selection method
and a given number of premises, and they could be reconstructed by the proof
reconstruction procedure described in Section 6. The ATPs were run with a time limit
of 30s. The maximum time limit for a single reconstruction tactic was 10s, depending
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Prover Selection Premises Reconstruction Solved (%) Solved

Vampire k-NN 1024 hrecon 30.778 285
Z3 k-NN 128 hrecon 37.473 347

E-Prover k-NN 1024 hrecon 39.741 368
Vampire k-NN 64 hrecon 40.929 379

Z3 n. Bayes 32 hrecon 41.469 384
Z3 n. Bayes 512 hrecon 42.009 389
Z3 n. Bayes 128 hrecon 42.549 394

E-Prover n. Bayes 256 hrecon 43.089 399
Z3 n. Bayes 16 hrecon 43.521 403

E-Prover n. Bayes 1024 hrecon 43.952 407
Vampire n. Bayes 256 hrecon 44.276 410

Z3 k-NN 64 hrecon 44.492 412
Vampire k-NN 512 hrecon 44.708 414
E-Prover k-NN 512 firstorder 44.924 416
total 46.112 427

Table 1 Success rates of the strategies on the training set in the greedy sequence order.

Prover Solved (%) Solved

Vampire 24.749 2292
Z3 23.961 2219

E-Prover 23.162 2145

Total 26.747 2477

Table 2 Prover results on the dependencies

on the tactic, as described in Section 6. No time limit was placed on the premise
selection phase, however for goals with largest number of available premises the time
does not exceed 0.5s for either of the considered algorithms. The first strategy that
includes firstorder appears only on twelfth position in the greedy sequence and
is therefore not used as part of the hammer. We show cumulative success rates to
display the progress in the greedy sequence.

The results of the hammer strategies including the premise selection are very
good in comparison with the results on the dependencies. Evaluating the translation
with hrecon reconstruction is presented in Table 2. The results are significantly
worse, mainly for two reasons. First, some dependencies are missing due to our way
of recording them which does not take into account the delta-conversion. Secondly,
the dependencies in proof terms often were added by automated tactics and are
difficult to use for the ATPs. It is sometimes easier for the ATPs to actually prove
the theorem from other lemmas in the library than from the original dependencies.

Given the common hardware configuration of computers today, we consider as
the integrated system a combination of eight complementary strategies. The final
results of the hammer including reconstruction on the validation set are presented in
Table 3.

8 Case Studies

The intended use of a hammer is to prove relatively simple goals using available lemmas.
The main problem a hammer system tries to solve is that of finding appropriate
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Prover Selection Premises Reconstruction Solved (%) Solved

Vampire k-NN 1024 hrecon 28.816 2673
E-Prover k-NN 1024 hrecon 25.593 2374
Vampire k-NN 64 hrecon 25.367 2353

Z3 n. Bayes 128 hrecon 24.299 2254
Z3 k-NN 128 hrecon 24.127 2238
Z3 n. Bayes 512 hrecon 23.243 2156
Z3 n. Bayes 32 hrecon 19.028 1765

E-Prover n. Bayes 256 hrecon 17.497 1623

total 40.815 3786

Table 3 The success rate of of the combination of strategies on the validation set

lemmas in a large collection and combining them to prove the goal. The advantage
of a hammer over specialised domain-specific tactics is that it is a general system
not depending on any domain knowledge. The hammer plugin may use all currently
accessible lemmas, which includes lemmas proven earlier in a given formalization, not
only the lemmas from the standard library or other predefined libraries.

It sometimes happens that the ATPs find proofs with fewer dependencies than the
proofs in the standard library. One example is the Coq lemma isometric rotation:

Lemma isometric_rotation : forall x1 y1 x2 y2 theta : R,
dist_euc x1 y1 x2 y2 =
dist_euc (xr x1 y1 theta) (yr x1 y1 theta)

(xr x2 y2 theta) (yr x2 y2 theta).

Its current proof in the Coq standard library uses 6 auxiliary facts and is performed
using the following 7 line script:

unfold dist_euc; intros; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat

| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;

[ apply isometric_rotation_0
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ] ]; apply Rle_0_sqr

Multiple ATPs found a shorter proof which uses only two of the dependencies:
the definition of euclidean distance and the lemma isometric rotation 0. This
suggests that the proof using the injectivity of square root is a detour, and indeed it
is possible to write a much simpler valid Coq proof of the lemma using just the two
facts used by the ATPs:

unfold dist_euc; intros;
rewrite (isometric_rotation_0 _ _ _ _ theta); reflexivity.

The proof may also be reconstructed from the found dependencies inside Coq. This
is also the case for all other examples presented in this section.

Also for some theorems the ATPs found proofs which use premises not present in
the dependencies extracted from the proof of the theorems in the standard library.
An example is the lemma le double from Reals.ArithProp:
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forall m n:nat, 2 * m <= 2 * n -> m <= n.

The proof of this lemma in the standard library uses 6 auxiliary lemmas and is
performed by the following proof script (two lemmas not visible in the script were
added by the tactic prove sup0):

intros; apply INR_le.
assert (H1 := le_INR _ _ H).
do 2 rewrite mult_INR in H1.
apply Rmult_le_reg_l with (INR 2).
replace (INR 2) with 2; [ prove_sup0 | reflexivity ].
assumption.

ATPs found a proof of le double using only 3 lemmas: Arith.PeanoNat.Nat.le 0 l,
Arith.Mult.mult S le reg l and Init.Peano.le n. None of these lemmas appear
among the original dependencies.

Another example of hammer usage is a proof of the following fact:

forall m n k : nat, m * n + k = k + n * m.

This cannot be proven using the omega tactic because of the presence of multiplication.
The tactic invocations eauto with arith or firstorder with arith do not work
either. The hammer tool finds a proof using two lemmas from Arith.PeanoNat.Nat:
add comm and mul comm.

A similar example is the goal

forall n : nat, 3 * 3 ^ n = 3 ^ (n + 1).

This goal cannot be solved using standard Coq tactics, including the tactic omega.
Z3 with 128 preselected premises found a proof using the following lemmas from
Arith.PeanoNat.Nat: add succ r, le 0 l, pow succ r, add 0 r. The proof may
be reconstructed using hexhaustive 0 or hyelles 5 tactic invocations.

The next example of a goal solvable by the hammer involves operations on lists.

forall {A} (x : A) l1 l2 (P : A -> Prop),
In x (l1 ++ l2) -> (forall y, In y l1 -> P y) ->
(forall y, In y l2 -> P y) ->
P x.

This goal cannot be solved (in reasonable time) using either eauto with datatypes
or firstorder with datatypes. The hammer solves this goal using just one lemma:
Lists.List.in app iff.

A similar example is

forall {A} (y1 y2 y3 : A) l l’ z, In z l \/ In z l’ ->
In z (y1 :: y2 :: l ++ y3 :: l’).

This goal cannot be solved using standard Coq tactics. Eprover with 512 preselected
premises found a proof using two lemmas from Lists.List: in cons and in or app.

The hammer is currently not capable of reasoning by induction, except in some
very simple cases. Here is an example of a goal where induction is needed.

forall (A : Type) (P : A -> Prop) (a : A) (l l’ : list A),
List.Forall P l /\ List.Forall P l’ /\ P a ->
List.Forall P (l ++ a :: l’).
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This goal can be solved neither by standard Coq tactics nor by the hammer. However,
it suffices to issue the ltac command induction l and the hammer can solve the
resulting two subgoals, none of which could be solved by standard Coq tactics. The
subgoal for induction base is:

A : Type
P : A -> Prop
a : A
============================
forall l’ : list A, Forall P nil /\ Forall P l’ /\ P a ->

Forall P (nil ++ a :: l’)

The hammer solves this goal using the lemma Forall cons from Lists.List and
the definition of ++ (Datatypes.app). The subgoal for the induction step is:

A : Type
P : A -> Prop
a, a0 : A
l : list A
IHl : forall l’ : list A, Forall P l /\ Forall P l’ /\ P a ->

Forall P (l ++ a :: l’)
============================
forall l’ : list A, Forall P (a0 :: l) /\ Forall P l’ /\ P a ->

Forall P ((a0 :: l) ++ a :: l’)

The hammer solves this goal using the lemma Forall cons, the inductive hypothesis
(IHl) and the definition of ++. Note that to reconstruct the ATP proof for this goal
it is crucial that our reconstruction tactics can do inversion on inductive predicates
in the context.

9 Limitations

In this section we briefly discuss the limitations of the current implementation of the
CoqHammer tool. We also compare the hammer with the automation tactics already
available in Coq.

The intended use of a hammer is to prove relatively simple goals using accessible
lemmas. Currently, the hammer works best with lemmas from the Coq standard
library. Testing with other libraries has been as yet very limited and the hammer
tool may need some adjustments to achieve comparable success rates.

The hammer works best when the goal and the needed lemmas are “close to” first-
order logic, as some more sophisticated features of the Coq logic are not translated
adequately. In particular, when dependent types are heavily used in a development
then the effectiveness of the hammer tool is limited. Specifically, case analysis over
inhabitants of small propositional inductive types is not translated properly, and the
fact that in Coq all inhabitants of Prop are also inhabitants of Type is not accounted
for.

A small propositional inductive type is an inductive type in Prop having just one
constructor and whose arguments are all non-informative (e.g. propositional). In Coq
it is possible to perform case analysis over an inhabitant of a small propositional
inductive type. This is frequently done when dealing with data structures where
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dependent types are heavily exploited to capture the data structure invariants.
Currently, all such pattern matches are translated to a fresh constant about which
nothing is assumed. Therefore, the ATPs will fail to find a proof, except for trivial
tautologies.

In Coq all propositions (inhabitants of Prop) are also types (inhabitants of Type).
Therefore, type formers expecting types as arguments may sometimes be fed with
propositions. For instance, one can use the pair type former as if it was a conjunction.
Our translation heavily relies on the possibility of detecting whether a subterm is
a proposition or not, in order to translate it to a FOL formula or a FOL term.
The currently followed approach to proposition detection is relatively simplistic. For
example, the pair type former should be translated to four different definitions, one
taking in input two propositions, etc. Currently, only one definition is generated (the
one with both arguments being of type Type).

In the context of code extraction the above two problems and some similar issues
were handled in Pierre Letouzey’s PhD thesis [Let04]. In [Let04] Coq terms are
translated into an intermediate language where propositions are either removed from
the terms or turned into unit types when used as types. It may be worthwhile to in-
vestigate if our translation could be factorized reusing the intermediate representation
from [Let04]. If successful, this would be a better approach.

We leave it for future work to increase effectiveness of the hammer on a broader
fragment of dependent type theory. In this regard our hammer is similar to hammers
for proof assistants based on classical higher-order logic, which are less successful
when the goal or the lemmas make heavy use of higher-order features.

The success of the hammer tactic is not guaranteed to be reproducible, because it
relies on external ATPs and uses time limits during proof reconstruction. Indeed, small
changes in the statement of the goal or a change of hardware may change the behaviour
of the hammer. However, once a proof has been found and successfully reconstructed
the user should replace the hammer tactic with an appropriate reconstruction tactic
shown by the hammer in the response window. This reconstruction tactic does not
depend on any time limits or external ATPs, so its success is independent of the
current machine.

In comparison to the hammer, domain-specific decision procedures, e.g., the omega
tactic, are generally faster and more consistently reliable for the goals they can solve.
On the other hand, the proof terms generated by the hammer tactic are typically
smaller and contain fewer dependencies which are more human-readable.

An advantage of Coq proof-search tactics like auto, eauto or firstorder is that
they can be configured by the user by means of hint databases. However, they are
in general much weaker than the hammer. The idea of a hammer is to be a strong
general-purpose tactic not requiring much configuration by the user.

10 Conclusions and Future Work

We have developed a first whole hammer system for intuitionistic type theory. This
involved proposing an approximation of the Calculus of Inductive Constructions,
adapting premise selection to this foundation, developing a translation mechanism to
untyped-first order logic, and proposing reconstruction mechanisms for the proofs
found by the ATPs. We have implemented the hammer as a plugin for the Coq proof
assistant and evaluated it on all the proofs in its standard library. The source code
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of the plugin for Coq versions 8.5, 8.6 and 8.7, as well as all the experiments are
available at:

http://cl-informatik.uibk.ac.at/cek/coqhammer/
The hammer is able to re-prove completely automatically 40.8% of the standard

library proofs on a 8-CPU system in about 40 seconds. This success rate is already
comparable to that offered by the first generations of hammer systems for HOL and
Mizar and can already offer a huge saving of human work.

To our knowledge this is the first translation which is usable by hammers. Strictly
speaking, our translation is neither sound nor complete. However, our experiments
suggest that the encoding is “sound enough” to be usable and that it is particularly
good for goals close to first-order logic. Moreover, a “core” version of the translation
is in fact sound [Cza16].

There are many ways how the proposed work can be extended. First, the re-
construction mechanism currently is able to re-prove only 85.2% (4215 out of 4841)
of the proofs founds by the ATPs, which is lower than that in other systems. The
premise selection algorithms are not as precise as those involving machine learning
algorithms tailored for particular logics. In particular, for similar size parts of the
libraries almost the same premise selection algorithms used in HOLyHammer [KU14]
or Isabelle/MaSh on parts of the Isabelle/HOL library [BGK+16], require on average
200–300 best premises to cover the dependencies, whereas in the Coq standard library
on average 499-530 best premises are required.

The core of the hammer – the translation to FOL – could be improved to make
use of more knowledge available in the prover in order to offer a higher success rate.
It could also be modified to make it more effective on developments heavily using
dependent types, and to more properly handle the advanced features of the Coq logic,
possibly basing on some of the ideas in [Let04]. Finally, the dependencies extracted
from the Coq proof terms do miss information used implicitly by the kernel, and are
therefore not as precise as those offered in HOL-based systems.

In our work we have focused on the Coq standard library. Evaluations on a proof
assistant standard library were common in many hammer comparisons, however this
is rarely the level at which users are actually working, and looking at more advanced
Coq libraries could give interesting insights for all components of a hammer. Since we
focused on the standard library during development, it is likely that the effectiveness
of the hammer is lower on libraries not similar to the standard library.

In particular, the Mathematical Components Library based on SSReflect [GM10]
would be a particularly interesting example, as it heavily relies on unification hints
to guide Coq automation. It has been used for example in the proofs of the four
color theorem [Gon07] and the odd order theorem [GAA+13]. On a few manually
evaluated examples, the success rate is currently quite low. It remains to be seen,
whether a hammer can provide useful automation also for such developments, and
how the currently provided translation could be optimized, to account for the more
common use of dependent types. Lastly, we would like to extend the work to other
systems based on variants of CIC and other interesting foundations, including Matita,
Agda, and Idris.
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Appendix A The Results of all Strategies on the Training Set

Prover Selection Premises Reconstruction Solved% Solved
Vampire k-NN 1024 hrecon 30.778 285
Vampire n. Bayes 1024 hrecon 30.778 285
Vampire n. Bayes 256 hrecon 30.454 282
Vampire k-NN 512 hrecon 29.590 274
Vampire k-NN 128 hrecon 29.482 273
Vampire n. Bayes 128 hrecon 29.266 271
Vampire k-NN 256 hrecon 29.158 270
Vampire n. Bayes 512 hrecon 28.726 266
E-Prover k-NN 1024 hrecon 27.538 255
E-Prover n. Bayes 1024 hrecon 26.890 249

Z3 n. Bayes 256 hrecon 26.890 249
Vampire n. Bayes 64 hrecon 26.674 247

Z3 k-NN 256 hrecon 26.566 246
Z3 k-NN 128 hrecon 26.458 245

Vampire k-NN 64 hrecon 26.134 242
Z3 n. Bayes 128 hrecon 26.026 241
Z3 k-NN 512 hrecon 25.918 240
Z3 n. Bayes 512 hrecon 25.918 240
Z3 n. Bayes 1024 hrecon 24.946 231

E-Prover n. Bayes 64 hrecon 24.838 230
Z3 k-NN 1024 hrecon 23.974 222

E-Prover n. Bayes 128 hrecon 23.434 217
Z3 n. Bayes 64 hrecon 23.434 217

E-Prover k-NN 64 hrecon 22.786 211
Z3 k-NN 64 hrecon 22.570 209

E-Prover k-NN 128 hrecon 22.030 204
Vampire k-NN 32 hrecon 21.382 198
E-Prover k-NN 512 hrecon 20.950 194
E-Prover k-NN 32 hrecon 20.842 193
Vampire n. Bayes 32 hrecon 20.626 191
E-Prover n. Bayes 256 hrecon 20.518 190
E-Prover n. Bayes 32 hrecon 20.194 187

Z3 n. Bayes 32 hrecon 19.546 181
E-Prover k-NN 256 hrecon 19.438 180

Z3 k-NN 32 hrecon 19.438 180
Z3 n. Bayes 16 hrecon 17.063 158

E-Prover n. Bayes 512 hrecon 16.739 155
Vampire n. Bayes 16 hrecon 16.739 155
E-Prover n. Bayes 16 hrecon 16.091 149
Vampire k-NN 1024 firstorder 15.551 144
Vampire k-NN 16 hrecon 15.335 142
Vampire k-NN 512 firstorder 15.227 141
Vampire n. Bayes 1024 firstorder 15.119 140

Z3 k-NN 16 hrecon 15.011 139
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Vampire k-NN 256 firstorder 14.579 135
E-Prover k-NN 16 hrecon 14.579 135
Vampire n. Bayes 512 firstorder 14.363 133
Vampire k-NN 128 firstorder 14.147 131
Vampire n. Bayes 256 firstorder 14.147 131

Z3 k-NN 256 firstorder 13.931 129
Z3 n. Bayes 512 firstorder 13.823 128
Z3 k-NN 1024 firstorder 13.715 127

Vampire n. Bayes 128 firstorder 13.607 126
Z3 n. Bayes 1024 firstorder 13.607 126

Vampire k-NN 64 firstorder 13.499 125
Z3 k-NN 512 firstorder 13.499 125

E-Prover k-NN 1024 firstorder 13.283 123
Vampire n. Bayes 64 firstorder 13.175 122

Z3 k-NN 128 firstorder 13.175 122
Z3 n. Bayes 256 firstorder 13.175 122

E-Prover n. Bayes 1024 firstorder 12.743 118
Z3 n. Bayes 128 firstorder 12.635 117
Z3 n. Bayes 64 firstorder 12.095 112
Z3 k-NN 64 firstorder 11.771 109

Vampire n. Bayes 32 firstorder 11.447 106
Vampire k-NN 32 firstorder 11.339 105
E-Prover n. Bayes 128 firstorder 11.015 102
E-Prover k-NN 128 firstorder 10.907 101
E-Prover n. Bayes 64 firstorder 10.907 101
E-Prover n. Bayes 32 firstorder 10.691 99

Z3 k-NN 32 firstorder 10.691 99
E-Prover k-NN 32 firstorder 10.583 98

Z3 n. Bayes 32 firstorder 10.475 97
E-Prover k-NN 64 firstorder 10.259 95

Z3 n. Bayes 16 firstorder 10.259 95
E-Prover k-NN 256 firstorder 9.935 92
E-Prover k-NN 512 firstorder 9.395 87
E-Prover n. Bayes 16 firstorder 9.395 87
Vampire n. Bayes 16 firstorder 9.395 87
E-Prover n. Bayes 256 firstorder 9.179 85

Z3 k-NN 16 firstorder 8.855 82
Vampire k-NN 16 firstorder 8.531 79
E-Prover n. Bayes 512 firstorder 8.099 75
E-Prover k-NN 16 firstorder 7.883 73
total 46.112 427
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Appendix B The proof reconstruction tactics

The core of our proof search tactic yelles is presented in Figure 3 in an ltac-like
pseudocode. Figure 4 presents most of the reconstruction tactics that the hammer
plugin tries in sequence with a fixed time limit for each. Figure 2 presents the
tactic ysplit used for goal splitting and the tactic isolve used at the leaves of the
proof search tree.

We proceed to describe the tactics in more detail. The notations and terminology
are as in Section 6.

The tactic ysplit destructs arguments to a match. Also, if in the current proof
state Γ ` G the goal is a conjunction G ≡ A∧B, then ysplit splits the state into Γ `
A and Γ,H : A ` B with H fresh. The hypothesis H is then simplified using the tactic
simp hyp (not shown in any of the figures). The hypothesis simplification consists of,
among other things, applying some of the left rules of Dyckhoff’s system LJT [Dyc92]
to H, i.e., in essence applying some forward reasoning involving H. The simplifications
performed by the tactic simp hyp invoked on a hypothesis H : A are as follows.
– If A is a proposition then for each H ′ : A → B in the context replace H ′ with
H ′′ : B.

– If A has the form ∀x1 . . . xn, A1 ∧A2 then replace H with H1 : ∀x1 . . . xn, A1 and
H2 : ∀x1 . . . xn, A2, and simplify H1 and H2 recursively.

– If A has the form ∀x1 . . . xn, A1 ∧A2 → C then replace H with

H ′ : ∀x1 . . . xn, A1 → A2 → C

and simplify H ′ recursively.
– If A has the form ∀x1 . . . xn, A1 ∨A2 → C then replace H with

H1 : ∀x1 . . . xn, A1 → C

and
H2 : ∀x1 . . . xn, A2 → C,

and simplify H1 and H2 recursively.
– If A has the form ∃x : T,C the replace H with x : T and H ′ : C (assuming x is

fresh), and simplify H ′ recursively.
– If A is a simple tautology like X = X or X → X then remove H.
– If H ′ : A occurs in the context with H ′ 6= H then remove H.

The tactic simp hyps used in the tactic isolve calls simp hyp repeatedly on every
hypothesis in the context.

The tactic trysolve tries to solve the current goal using a combination of the
tactics eauto and congruence. The tactic isolve invokes trysolve after first trying
to split the goal and simplify the hypotheses. In addition to the tactics ysplit and
simp hyps it uses the following tactics:
– orsplit splits the state Γ,H : ∀x1 . . . xn, A1 ∨A2 ` G, where none of the types

of x1, . . . , xn is a proposition, into the states

Γ,H1 : A1[?e1/x1, . . . , ?en/xn] ` G

and
Γ,H2 : A2[?e1/x1, . . . , ?en/xn] ` G

where ?e1, . . . , ?en are fresh existential metavariables of appropriate types,
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Ltac ysplit :=
match goal with

| [ ` ?A ∧ ] ⇒
cut A; [ let H := fresh "H" in

intro H ; split; [ exact H | simp hyp H ] | idtac ]
| [ ` context[match ?X with ⇒ end] ] ⇒ destruct X eqn:?
| [ H : context[match ?X with ⇒ end] ` ] ⇒ destruct X eqn:?

end.
Ltac trysolve :=

eauto 2 with nocore; try solve [ constructor ]; try subst;
match goal with

| [ ` ?t = ?u ] ⇒ try solve [ hnf in *; congruence 8 ]
| [ ` ?t 6= ?u ] ⇒ try solve [ hnf in *; congruence 8 ]
| [ ` False ] ⇒ try solve [ hnf in *; congruence 8 ]
| ⇒ idtac

end.
Ltac isolve :=

let msplit splt simp :=
simp tt;
repeat (progress splt tt; simp tt).

in
let rec msolve splt simp :=

msplit splt simp;
lazymatch goal with

| [ H : False ` ] ⇒ exfalso; exact H
| [ ` ∨ ] ⇒
trysolve;

try solve [ left; msolve splt simp | right; msolve splt simp ]
| [ ` ∃ x, ] ⇒
trysolve; try solve [ eexists; msolve splt simp ]

| ⇒
trysolve

end
in
msolve

ltac:(fun ⇒ first [ ysplit | orsplit ])
ltac:(fun ⇒ intros; simp hyps; repeat exsimpl).

Fig. 2 Tactics ysplit and isolve.

– exsimpl replaces any hypothesis of the form H : ∀x1 . . . xn, ∃y,A where none of
the types of x1, . . . , xn is a proposition with

H ′ : A[?e1/x1, . . . , ?en/xn]

where ?e1, . . . , ?en are fresh existential metavariables of appropriate types.
The tactic yelles shown in Figure 3 implements the core of our eauto-type proof

search procedure. The argument defs is a list of definitions to try unfolding on, n is
the desired search depth, rtrace is a list of hypotheses with which rewriting was tried
since the last context modification, and gtrace is a list of goals encountered since the
last context modification. At the leaves of the search tree, i.e., when the depth n is 0,
the tactic isolve is used. Otherwise, the tactic yelles checks if the current goal
occurs in the list gtrace and fails if it does. If the goal does not occur in gtrace then
nondeterministically (i.e. with backtracking) one of the following is tried.
– If there is a hypothesis H : False in the context then solve the current goal using

the exfalso tactic.
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– If the goal is one of the hypotheses then use the assumption tactic.
– If the goal has the form A → B and a hypothesis H : A occurs in the context,

then change the goal to B and call the tactic yelles with the same arguments,
failing the whole procedure (i.e. without trying any further actions listed here) if
it fails.

– If the goal has the form ∀x,A or A ∧ B, or the goal or one of the hypotheses
contains a match on a term with no bound variables, then call the tactic doyelles
(described below), failing the whole procedure if it fails.

– If the goal is an existential ∃x,A then try instantiating it with a fresh existential
metavariable and calling yelles recursively with the same depth.

– If there is a hypothesis H : ∀x1 . . . xn, A = B in the context which does not occur
in the list rtrace, then try rewriting the goal with H calling yelles recursively
with depth n− 1. More precisely, the tactic yrewrite used to rewrite using H is
defined as:
Ltac yrewrite H := (erewrite H by isolve) || (erewrite ← H by isolve).

– Try applying a hypothesis from the context using the yapply tactic, and then
calling yelles recursively with depth n− 1. The tactic yapply (not shown in the
figures) works like eapply except that instead of simply unifying the goal with
the target of the hypothesis, it tries unification modulo some simple equational
reasoning. The idea of the yapply tactic is broadly similar to the smart matching
of Matita [AT10], but our implementation is more heuristic and not based on
superposition.

– Try solving the current goal with the isolve tactic.
– If there is a hypothesis H : ∀x1 . . . xk . . . xn,∃y,A such that the types of x1, . . . , xk

are not propositions and either k = n or the type of xk+1 is a proposition, then
replace H with H ′ : ∀xk+1 . . . xn,∃y,A[?e1/x1, . . . , ?ek/xk] where ?e1, . . . , ?ek are
fresh existential metavariables of appropriate types, and call yelles recursively
with depth n− 1, resetting rtrace and gtrace to empty lists. The hypothesis H ′ is
introduced into the context using the tactic yintro described below.

– If the goal is a disjunction then try applying the left or the right disjunction
introduction rule, and then calling yelles recursively with depth n− 1.

– If there is a hypothesis H : ∀(x1 : T1) . . . (xn : Tn), A ∨B in the context, then use
the tactic orinst on H and call yelles recursively with depth n− 1, resetting
rtrace and gtrace. The tactic orinst (not shown in the figures) removes H from
the context Γ , yielding Γ ′, and then splits the proof state Γ ′ ` G into the following
where Ti1 , . . . , Tim are those among T1, . . . , Tn which are not propositions, and
?ei1 , . . . , ?eim are fresh existential metavariables of appropriate types, and for
any term C we use C ′ to denote C[?ei1/xi1 , . . . , ?eim/xim ], and Tj1 , . . . , Tjmk

are those among T1, . . . , Tk which are propositions, and Hj1 , . . . ,Hjnk
are fresh

hypothesis names.
– Γ ′, Hj1 : T ′j1

, . . . ,Hjmk−1
: T ′jmk−1

` T ′k for each k such that Tk is a proposition.
– Γ ′, Hj1 : T ′j1

, . . . ,Hjmn
: T ′jmn

, A′ ` G′.
– Γ ′, Hj1 : T ′j1

, . . . ,Hjmn
: T ′jmn

, B′ ` G′.

The tactic doyelles in Figure 3 first repeatedly invokes the tactic yintro (de-
scribed below), then repeatedly invokes cbn and ysplit, and finally either calls
isolve if the depth n is 0, or otherwise tries the first of the following that does not
fail.
– Invoke the tactic yelles with depth n.
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– Destruct a non-propositional hypothesis and invoke doyelles recursively with
depth n− 1.

– Do inversion on a propositional atomic hypothesis and invoke doyelles recursively
with depth n− 1.

– If the goal is an equation A = B then try destructing A and/or B, and invoke
yelles with depth n− 1.

– If there exists a hypothesis with target False, then use exfalso and invoke yelles
with depth n.

The tactic yintro used in the tactics yelles and doyelles works as follows. If
the goal has the form A→ B then it changes the goal to B and adds a new hypothesis
H : A to the context, unless A is a proposition and it already occurs in the context.
Next, the hypothesis is simplified using the simp hyp tactic. Additionally, if A is a
proposition and the total number of hypotheses does not exceed 8 then the following
actions are performed.

– For each H ′ : A′ → B′ in the context try unifying A and A′ and then if successful
replace H ′ with H ′′ : B where B is B′ with some of the existential metavariables
instantiated by the unification of A and A′.

– If A = B → C with B an atom and there is a hypothesis H ′ : B′ in the context
such that B and B′ unify, then unify them and replace H with H ′′ : C ′ where C ′
is C with some of the existential metavariables instantiated by the unification
of B and B′.

– If A is an equality A1 = A2 then try rewriting H in every other hypothesis H1 ,
using the following ltac code:
(rewrite H in H1 by isolve) || (rewrite ← H in H1 by isolve).

The tactic dsolve (not shown in the figures) does one of the following.

– If the goal is a not proposition then try the tactic auto and the ltac code:
try solve [ repeat constructor ].

– If the goal is a proposition then try the tactics auto and easy.

Finally, the tactic yellesd in Figure 3 implements our proof search procedure by
first normalising the goal using the call-by-name strategy (tactic cbn), then invoking
doyelles, unshelving the shelved goals (these are typically the types of existential
metavariables that were not instantiated by unification) and solving them using
dsolve.

Figure 4 presents most of the tactics that are tried during the proof reconstruction
phase. The tactic invocation hinit hyps lems defs used in Figure 4 removes the
hypotheses not present in hyps, adds lems to the context and tries unfolding the
definitions in defs, depending on some heuristic (whether they unfold to a term with a
“simple” form). The tactic gunfolding tries unfolding definitions, using slightly less
stringent heuristic criteria than hinit. The tactic generalizing repeatedly removes
a hypothesis H : A with A a proposition, changing the goal G to A→ G. The rest
of the code in Figure 4 depends on the tactics already described and should be
self-explanatory.

During proof reconstruction the following tactic invocations are tried in the given
order with a time limit for each shown in brackets. Proof reconstruction fails if none
of the listed tactics manages to solve the goal within the given time limit. If one
of the listed tactics fails, it typically fails quickly and the next tactic is tried. In
principle, the tactics could be run in parallel.
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Ltac yelles defs n rtrace gtrace :=
lazymatch n with

| O ⇒ solve [ isolve ]
| S ?k ⇒

let G := getgoal in
notInList G gtrace;
match goal with

| [ H : False ` ] ⇒ exfalso; exact H
| [ H : G ` ] ⇒ assumption
| [ H : ?P ` ?P → ?Q ] ⇒
(let H1 := fresh "H" in intro H1 ; try clear H1 ;
move H at bottom; yelles defs n rtrace gtrace) || fail 1

| [ ` ∀ x, ] ⇒ doyelles defs n || fail 1
| [ ` ∧ ] ⇒ doyelles defs n || fail 1
| [ ` context[match ?X with ⇒ end] ] ⇒ doyelles defs n || fail 1
| [ H : context[match ?X with ⇒ end] ` ] ⇒ doyelles defs n || fail 1
| [ ` ∃ x, ] ⇒

eexists; yelles defs n rtrace (gtrace, G)
| [ H : ∀ x1 . . . xn, = ` ] ⇒
notInList H rtrace;
yrewrite H ; yelles defs k (rtrace, H) (gtrace, G)

| [ H : ` ] ⇒
yapply H ; yelles defs k rtrace (gtrace, G)

| [ ` ] ⇒
solve [ isolve ]

| [ H : ∀ x1 . . . xn, ∃ e, ` ] ⇒
einst H ; clear H ; yintro; yelles defs k Empty Empty

| [ ` ∨ ] ⇒
(left; yelles defs k rtrace (gtrace, G))
||

(right; yelles defs k rtrace (gtrace, G))
| [ H : ∀ x1 . . . xn, ∨ ` ] ⇒
orinst H ; yelles defs k Empty Empty

end
end

with doyelles defs n :=
yintros; repeat (cbn; try ysplit);
lazymatch n with

| 0 ⇒ solve [ isolve ]
| S ?k ⇒

first [ yelles defs n Empty Empty |
match goal with

| [ x : ?T ` ] ⇒
notProp T ; destruct x; unfolding defs; doyelles defs k

| [ H : ?T ` ] ⇒
isPropAtom T ;
inversion H ; try subst;
unfolding defs; doyelles defs k

| [ ` ?A = ?B ] ⇒
progress (try destruct A eqn:?; try destruct B eqn:?);
unfolding defs;
yelles defs k Empty Empty

| [ H : ∀ x1 . . . xn, False ` ] ⇒
exfalso; yelles defs n Empty Empty

end]
end.

Ltac yellesd defs n := cbn; unshelve doyelles defs n; dsolve.

Fig. 3 Tactic yelles.
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– htrivial (2s).
– hobvious (2s).
– heasy (3s).
– hsimple (3s).
– hyelles 4 (5s).
– hyelles 6 (7s).
– hyelles 8 (10s).
– hyreconstr (10s).
– hexhaustive 0 (3s).
– hreconstr 4 (5s).
– hexhaustive 2 (7s).
– hreconstr 6 (7s).
– hreconstr 8 (10s).
– hexhaustive 4 (10s).

It is important to note that the time limits are used only when invoking the hammer
tactic. The specific reconstruction tactics, which the user is supposed to copy into
the source from the response window upon success, do not use any time limits and
are machine-independent.

The whole source of the tactics hyreconstr and hexhaustive is not included
in Figure 4. The tactic hyreconstr essentially tries to invoke yellesd with various
depth parameters, using some additional heuristics to unfold definitions and destruct
some variables. The tactic invocation hexhaustive n performs exhaustive proof search
up to depth 2 with the tactics eapply and erewrite (this involves backtracking on
existential metavariable instantiations to ensure that no possible instantiations are
missed, which is not done with ordinary backtracking), using yellesd defs n at the
leaves.
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Ltac htrivial hyps lems defs :=
hinit hyps lems defs;
simp hyps;
intuition (auto with nocore);
try easy;
try subst;
try solve [ hnf in *; congruence 8 ];
try solve [ constructor ].

Ltac hobvious hyps lems defs :=
htrivial hyps lems defs;
simp hyps;
try solve [ isolve ];
try yellesd defs 1.

Ltac heasy hyps lems defs :=
hobvious hyps lems defs;
try solve [ unshelve (intuition isolve; eauto 10 with nocore); dsolve ];
try congruence.

Ltac hsimple hyps lems defs :=
hobvious hyps lems defs;
gunfolding defs;
simp hyps;
try yellesd defs 2.

Ltac hyelles n hyps lems defs :=
hobvious hyps lems defs;
try yellesd defs n.

Ltac hreconstr n hyps lems defs :=
hsimple hyps lems defs;
generalizing;
repeat (yintros; repeat ysplit);
try yellesd defs n.

Fig. 4 Reconstruction tactics.
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