
Certification of
Nonclausal Connection Tableaux Proofs

Michael Färber[0000−0003−1634−9525] and Cezary Kaliszyk[0000−0002−8273−6059]

Universität Innsbruck, Austria
michael.faerber@gedenkt.at, cezary.kaliszyk@uibk.ac.at

Abstract. Nonclausal connection tableaux calculi enable proof search
without performing clausification. We give a translation of nonclausal
connection proofs to Gentzen’s sequent calculus LK and compare it to
an existing translation of clausal connection proofs. Furthermore, we
implement the translation in the interactive theorem prover HOL Light,
enabling certification of nonclausal connection proofs as well as a new,
complementary automation technique in HOL Light.

1 Introduction

Most automated theorem provers (ATPs) output only limited proof traces for
performance reasons. This is in contrast to the LCF approach, which hinges on
the correctness of a small, trusted kernel [13]. One way to certify the correctness
of proofs produced by ATPs is to translate them to interactive theorem provers
(ITPs) [15, 17]. Certification of proofs given by ATPs is also important for the
integration of ATPs into interactive theorem provers, providing automation in
the form of proof tactics [5].

Most ATPs convert their input problems to clausal normal form as preprocess-
ing step [23]. To reconstruct the resulting clausal proofs in an ITP, it is necessary
to verify in the ITP the conversion to clausal normal form. The ATP nanoCoP
has demonstrated that a connection prover not requiring clausification can be
effectively implemented [27]. The reconstruction of nonclausal proofs eliminates
the necessity of proving the correctness of the clausification, but on the other
hand, translating the proofs is more involved.

In this paper, we describe the translation of clausal and nonclausal connection
proofs to Gentzen’s LK. To ease the translation, we introduce slightly modified
versions of the clausal and nonclausal connection calculus in section 3. Using
these calculi, we describe a translation method from clausal and nonclausal
connection proofs to LK in section 4. Based on this translation, we develop in
section 5 an automatic proof certification of clausal proofs from leanCoP as well
as of nonclausal proofs from nanoCoP in the ITP HOL Light. We evaluate the
performance of our implementations on HOL Light problem sets in section 6.

This paper generalises work co-authored by the second author of this paper
about the certification of clausal connection tableaux proofs [19]. Whereas [19] is
concerned more with technical questions of implementing a clausal prover and a
corresponding proof translation in a functional language, this paper abstracts
more from technical details in order to treat the more involved nonclausal proof

2 Michael Färber and Cezary Kaliszyk

translation. This paper extends section 6.4 of the first author’s PhD thesis [11],
where a preliminary version of the nonclausal proof translation described in this
paper was introduced.

2 Connection Calculi

In this section, we will give a brief overview of the clausal and the nonclausal
connection tableaux calculus. For more details and examples, see [26, 27].1

Let us start by fixing some notation. The transitive closure of a relation
R is denoted by R+, and the transitive reflexive closure by R∗. A term t is
either a variable x, a constant a, or f(t1, . . . , tn), where f is a function symbol
of arity n and t1, . . . , tn are terms. An atom A is P (t1, . . . , tn), where P is a
predicate of arity n and t1, . . . , tn are terms. A (first-order) formula F is (A),
(F1 ∨ F2), (F1 ∧ F2), (F1 =⇒ F2), (¬F1), (∀x.F1), or (∃x.F1), where F1 and
F2 are formulas, A is an atom, and x is a variable. We write a sequence of
quantifiers ∀x1 . . . xn.F as ∀x.F . The formula F [t/x] denotes the formula F with
all unbound occurrences of x replaced by t. A literal L is either ¬A or A, where
A is an atom. The complement L of a literal is A if L is of the shape ¬A, and
¬A otherwise. A substitution σ is a function from variables to terms.

In the clausal calculus, a clause C is ∀x.(L1 ∨ · · · ∨ Ln) and a matrix M is
C1 ∧ · · · ∧Cn. In the nonclausal calculus, a clause C is ∀x.(X1 ∨ · · · ∨Xn), where
X is either a literal or a matrix, and a matrix M is C1 ∧ · · · ∧ Cn.2 We refer
to matrices in the clausal calculus as clausal matrices and to matrices in the
nonclausal calculus as nonclausal matrices.

We can write a clause ∀x.(L1 ∨ · · · ∨ Ln) as a set {L1, . . . , Ln} and we can
write a matrix C1∧· · ·∧Cn as a set {C1, . . . , Cn}. Alternatively, we write matrices
as row vectors and clauses as column vectors.

For any formula F , there are equisatisfiable closed formulas M(F) and M̄(F),
where M(F) is a nonclausal matrix and M̄(F) is a clausal matrix. We can
convert any formula to a nonclausal matrix by conversion to negation normal
form, Skolemisation (eliminating existential quantifiers), and pushing universal
quantifiers inwards via ∀x.(F1 ∧ F2) ≡ (∀x.F1) ∧ (∀x.F2).
Example 1. Consider the following equivalent formulas F and F̄ .

F = Q ∧ P (a) ∧ ∀x.(¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)))
F̄ = Q ∧ P (a) ∧ (∀x.¬P (x) ∨ ¬P (s2x)) ∧ (∀x.¬P (x) ∨ P (sx) ∨ ¬Q)

1 We diverge from [26] by using a refutational point of view; that is, instead of proving
formulas directly, we refute their negations. This shows up for example when we
interpret clauses and matrices: In this paper, a clause (of a negated formula) represents
a disjunction, whereas in [26], a clause (of an unnegated formula) represents a
conjunction. Our refutational view is historically motivated by other proof certification
methods, namely those for MESON [15] and leanCoP [19].

2 We represent clauses with quantifiers to reduce the size of the translated proofs.

Certification of Nonclausal Connection Tableaux Proofs 3

For brevity, we write sx for s(x) and s2x for s(s(x)). The nonclausal matrix M
corresponds to F and the clausal matrix M̄ to F̄ :

M =

[Q] [P (a)]

 ¬P (x)[
[¬P (s2x)]

[
P (sx)
¬Q

]]

M̄ =

[Q] [P (a)]
[
¬P (x)
¬P (s2x)

]¬P (x)
P (sx)
¬Q

The words of the connection calculi treated in this paper are tuples
〈C,M,Path〉, where C is a clause, M is a matrix, and Path is a set of literals
and matrices called the active path.3 In the calculus rules, σ is a global (or
rigid) term substitution, i.e. it is applied to the whole derivation. We say that a
(non)clausal connection proof of M is a derivation of 〈∅,M, ∅〉 in the (non)clausal
connection calculus.

The rules of the clausal connection calculus are shown in Figure 1 [30]. For any
closed formula F , we have that F is unsatisfiable iff there is a clausal connection
proof of M̄(F) [3]. A clausal connection proof of M̄ from Example 1 is given in
Figure 2.

Axiom A
{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is copy of C1 ∈M

Reduction C,M,Path ∪ {L′}
R

C ∪ {L},M, Path ∪ {L′}
where σ(L) = σ(L′)

Extension C2 \ {L′},M, Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path

where C2 is copy of C1 ∈M and L′ ∈ C2 with σ(L) = σ(L′)

Fig. 1. Clausal connection calculus rules.

We now proceed to introduce definitions related to the nonclausal connection
calculus.

3 In the original description of the calculi, Path denotes a set of literals. Our generali-
sation to literals and matrices is motivated by the correctness proof of our translation,
in particular Theorem 1. It does, however, not alter the actual proof search with the
calculi, as all active paths in a connection proof tree will only contain literals.

4 Michael Färber and Cezary Kaliszyk

A
{}, M̄ , {Q,¬P (x′)}

A
{}, M̄ , . . .

A
{}, M̄ , . . .

E
{¬P (x̄)}, M̄ , {Q,P (sx′), P (sx̂)}}

A
{}, M̄ , {Q,P (sx′)}

R
{¬Q}, M̄ , {Q,P (sx′)}

E
{P (sx̂),¬Q}, M̄ , {Q,P (sx′)}

A
{}, M̄ , {Q}

E
{P (sx′)}, M̄ , {Q}

E
{¬P (x′), P (sx′)}, M̄ , {Q}

A
{}, M̄ , {}

E
{Q}, M̄ , {}

S
ε, M̄ , ε

Fig. 2. Clausal connection proof with σ = {x′ 7→ a, x̂ 7→ sx′, x 7→ x′}.

Definition 1 (Clause Predicates). A clause C recursively contains a literal
or a matrix X iff X ∈+ C.4 A clause C ∈+ M is α-related to X iff there is some
M ′ ∈∗ M with {CX , CC} ⊆ M ′ such that CX 6= CC , X ∈+ CX , and C ∈∗ CC .
A variable is free in C ∈+ M if it occurs only in literals recursively contained
in C and (possibly) in literals to which C is α-related. A clause C ′ is a parent
clause of C iff M ′ ∈ C ′ and C ∈M ′ for some matrix M ′.
Definition 2 (Clause Functions). A copy of the clause C ∈+ M is created
by replacing all free variables in C with fresh variables. M [C1\C2] denotes the
matrix M in which the clause C1 is replaced by the clause C2.

In a clausal matrix M̄ , all clauses in M̄ can potentially give rise to an extension
step. In a nonclausal matrix M , however, we have clauses C for which C ∈+ M ,
but C /∈M . It depends on the active path which of these clauses may give rise
to an extension step. Those clauses which do are called extension clauses.
Definition 3 (Extension Clause). The clause C ∈+ M is an extension clause
(e-clause) of the matrix M with respect to a set Path iff either (a) C recursively
contains an element of Path, or (b) C is α-related to all elements of Path
recursively contained in M and if C has a parent clause, that parent clause
recursively contains an element of Path.

Given an extension clause, its β-clause removes from the clause those parts
that are irrelevant to the current subgoal.
Definition 4 (β-clause). The β-clause of C with respect to L is C with L and
all clauses that are α-related to L removed.
Example 2. Consider the nonclausal matrix

M =

[Q][P (a)]

C3︷ ︸︸ ︷ ¬P (x)[
︸ ︷︷ ︸

C4

[¬P (s2x)]︸ ︷︷ ︸
C5

[
P (sx)
¬Q

]]

from Example 1. The extension clauses with respect to {Q} are all clauses C ∈M .
In particular, the first clause in M , {Q}, is an extension clause due to condition
4 We use the term “recursively contains” instead of “contains” as employed in [27] to
clearly distinguish it from regular set membership.

Certification of Nonclausal Connection Tableaux Proofs 5

(a) of Definition 3, because it contains Q, and the other clauses inM are extension
clauses due to condition (b), because they are α-related to Q and do not have
parent clauses. Only one of the clauses in M recursively contains ¬Q, namely
C3. The β-clause of C3 with respect to ¬Q is[

¬P (x)[[
P (sx)

]]]

Let us now assume that σ(x) = a. The extension clauses with respect to
{Q,P (sx)}∪

{
P (s2a)

}
are all clauses in M , plus C4 due to condition (b) and C5

due to condition (a). Two of these extension clauses recursively contain the literal
¬P (s2x) that can be unified with ¬P (s2a), namely C3 and C4. The β-clause of
C4 with respect to ¬P (s2x) is {}, and the β-clause of C3 with respect to ¬P (s2x)
is [

¬P (x)
[[]]

]
Some β-clauses in this example will be used in a nonclausal proof in Figure 7.

The rules of the nonclausal calculus are shown in Figure 3. The difference in
the calculus rules to the clausal variant is the addition of a decomposition rule,
and the adaptation of the extension rule to the nonclausal setting. For any closed
formula F , we have that F is unsatisfiable iff there is a nonclausal connection
proof of M(F) [26]. A nonclausal proof of M from Example 1 as well as a shorter
clausal proof of M̄ from the same example will be given using slightly modified
versions of the calculi in section 3.

Axiom A
{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is copy of C1 ∈M

Reduction C,M,Path ∪ {L′}
R

C ∪ {L},M, Path ∪ {L′}
where σ(L) = σ(L′)

Extension C3,M [C1\C2], Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path

where C3 is the β-clause of C2 with respect to L′, C2 is copy of
C1, C1 is e-clause of M with respect to Path ∪ {L}, L′ ∈+ C2
with σ(L) = σ(L′)

Decomposition C ∪ C′,M, Path
D

C ∪ {M ′},M, Path
where C′ ∈M ′

Fig. 3. Nonclausal connection calculus rules.

6 Michael Färber and Cezary Kaliszyk

3 Compressed Connection Calculi

In Otten’s presentation of connection calculi [26], all proof rules have a fixed
number of premises. To ease the presentation of proofs in this paper, we present
slightly reformulated versions of Otten’s calculi. We call these calculi compressed,
because proofs in these calculi usually consist of fewer proof steps and take up
less space. The compressed calculi can be considered a mixture between Otten’s
and Letz’s presentation of connection tableaux [21].

We introduce the following notation for rules with an arbitrary number of
premises: ∧

i
Pi

C
≡

P1 . . . Pn

C

The compressed connection calculi are shown in Figures 4 and 5. In the original
calculi, the words are 〈C,M,Path〉. In the compressed calculi, the words are
〈X,M,Path〉, where X denotes an arbitrary clause element, i.e. a matrix or a
literal. In the compressed calculi, the axiom rule becomes obsolete.

Start
∧

i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

Reduction R
L,M,Path ∪ {L′}

where σ(L) = σ(L′)

Extension
∧

i
〈Li,M, Path ∪ {L}〉

E
L,M,Path

where {L1, . . . , Ln} ∪ {L′} is copy of C ∈M and σ(L) = σ(L′)

Fig. 4. Compressed clausal connection calculus.

We will now show how proofs can be translated between the compressed
calculi in this section and the original calculi in section 2.
Lemma 1. The sequent 〈{X1, . . . , Xn},M, Path〉 has a proof in a connection
calculus iff all sequents 〈X1,M, Path〉, . . . , 〈Xn,M, Path〉 have proofs in the
corresponding compressed connection calculus.
Proof. Any connection proof of 〈{X1, . . . , Xn} ,M, Path〉 has the following shape:

P1

P2

Pn

A
{},M, Path

Rn ...
R2 {X2, . . . , Xn},M, Path

R1 {X1, . . . , Xn},M, Path

Certification of Nonclausal Connection Tableaux Proofs 7

Start
∧

i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

Reduction R
L,M,Path ∪ {L′}

where σ(L) = σ(L′)

Extension
∧

i
〈Xi,M [C1\C2], Path ∪ {L}〉

E
L,M,Path

where {X1, . . . , Xn} is the β-clause of C2 with respect to L′, C2
is copy of C1, C1 is e-clause of M with respect to Path ∪ {L},
L′ ∈+ C2 with σ(L) = σ(L′)

Decomposition
∧

i
〈Xi,M, Path〉

D
M ′,M, Path

where {X1, . . . , Xn} ∈M ′

Fig. 5. Compressed nonclausal connection calculus.

From such a proof, we can recursively construct proofs of 〈Xi,M, Path〉 in the
corresponding compressed calculus by

P ′iRi
Xi,M, Path

where P ′i is the translation of the proof Pi to the compressed calculus. Similarly,
we can translate proofs from the compressed to the original calculi. ut
Example 3. For the matrices M and M̄ in Example 1, proofs in the compressed
calculi are given in Figures 6 and 7. The extension steps used to prove 〈Q,M, {}〉
and 〈P (sx̂), M̂ , . . . 〉 in the nonclausal proof of M are explained in Example 2.

E
¬P (x′), M̄ , {Q}

E
¬P (x̄), M̄ , {Q,P (sx′), P (sx̂)}

E
P (sx̂), M̄ , {Q,P (sx′)}

R
¬Q, M̄, {Q,P (sx′)}

E
P (sx′), M̄ , {Q}

E
Q, M̄, {}

S
ε, M̄ , ε

Fig. 6. Proof in the compressed clausal calculus with σ = {x′ 7→ a, x̂ 7→ sx′, x 7→ x′}.

4 Connection Proof Translation

In this section, we propose a translation method from connection proofs to
Gentzen’s sequent calculus LK [12].

8 Michael Färber and Cezary Kaliszyk

E
¬P (x′),M ′, {Q}

E
P (sx̂), M̂ , {Q,P (sx′)}

R
¬Q, M̂, {Q,P (sx′)}

D[
[¬P (s2x̂)]

[
P (sx̂)
¬Q

]]
, M̂ , {Q,P (sx′)}

E
P (sx′),M ′, {Q}

E
Q,M, {}

S
ε,M, ε

Fig. 7. Proof in the compressed nonclausal calculus with σ = {x′ 7→ a, x̂ 7→ sx′}.

A connection proof for a first-order formula F consists of a connection proof
tree and a global substitution σ. Given this information, we want to construct a
proof of F ` ⊥, which is written in LK as F `. To more concisely present the
proof translation, we omit the substitution σ in the LK translation; for example,
instead of writing σ(L), σ(M), σ(Path) `, we write L,M,Path `.

We translate connection proof trees recursively by distinguishing the different
rules of the calculus. We denote by [Γ `] the LK translation of the connection
proof for Γ . We write that C is in M iff M = C1 ∧ · · · ∧ Cn with C = Ci for
some i with 1 ≤ i ≤ n.

We use a rule ∧L to extract a conjunct from a conjunction while keeping
the conjunction in the context, as well as a rule ⊥L to derive ⊥ from two
complementary literals in the context:5

Γ,Ci, C1 ∧ · · · ∧ Cn ` ∆ ∧L
Γ,C1 ∧ · · · ∧ Cn ` ∆

⊥L
Γ,A,A `

We now describe the translation of connection proofs. Two rules of the
connection calculi are translated the same way for clausal and nonclausal proofs,
namely the start and the reduction rule. We show the translation of these rules
in Figure 8. For the start rule, the translation obtains the formula corresponding
to the clause C with the ∧L rule, and instantiates it with the ∀L rule. The
substitution σ is used to determine the instantiations, where fresh names are
invented when a variable is unbound in the substitution. As noted before, we
omit σ in the LK translation, writing X1 ∨ · · · ∨Xn,M ` to abbreviate σ(X1 ∨
· · ·∨Xn), σ(M) `. Then, the sequent is split into several proof trees [Xi,M, {} `],
which represent the translations of the connection proofs for 〈Xi,M, {}〉.6

4.1 Clausal Proof Translation
The translation of the clausal extension rule (shown in Figure 4) is given in
Figure 9. First, L,M,Path ` is transformed to the equivalent M,P `, where
5 These rules are not part of Gentzen’s original LK calculus. However, translating them
into Gentzen’s LK is straightforward.

6 In the clausal setting, Xi could be written as Li, but because the same rule is used
in the nonclausal setting, where Xi can represent either a literal or a matrix, we
write Xi for the common rules.

Certification of Nonclausal Connection Tableaux Proofs 9

Connection Calculus LK

∧
i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

[X1,M, {} `] . . . [Xn,M, {} `]
∨L

X1 ∨ · · · ∨Xn,M ` ∀L
∀x.(X1 ∨ · · · ∨Xn),M `

∧L
M `

where ∀x.(X1 ∨ · · · ∨Xn) in M

R
L,M,Path ∪ {L′}
where σ(L) = σ(L′)

⊥L
L,M,Path ∪ {L′} `

where L = L′

Fig. 8. LK translation of common connection calculus rules.

P = Path∪{L}. The remaining translation resembles that of the start rule, with
the exception that it additionally closes a proof branch containing the negated
literal L.

[L1,M, P `] . . .
⊥L

L,M,P ` . . . [Ln,M, P `]
∨L

L1 ∨ · · · ∨ L ∨ · · · ∨ Ln,M, P `
∀L

∀x.(L1 ∨ · · · ∨ Ln),M, P `
∧L

M,P `
L,M,Path `

where ∀x.(L1 ∨ · · · ∨ Ln) in M and P = Path ∪ {L}

Fig. 9. LK translation of the clausal extension rule.

4.2 Nonclausal Proof Translation

We now proceed with the translation of nonclausal connection proofs, using the
calculus introduced in Figure 5. The LK context in the translation of nonclausal
proofs now has the shape X,M , Path, where M is a set of matrices instead of a
single matrix M as in the clausal case. During translation, M is extended such
that for each word 〈L,M,Path〉 in the connection calculus and its corresponding
sequent L,M , Path ` in LK, the e-clauses of M with respect to Path ∪ {L} are
the clauses C for which C in M ′ and M ′ ∈M . We will see this in detail in the
explanation for the extension rule.

The LK translation of nonclausal proofs reuses the translations of the start
and the reduction rules given in Figure 8. However, occurrences of M in the LK

10 Michael Färber and Cezary Kaliszyk

translation are replaced by M . The start rule uses M = {M}, i.e. M contains
only the initial problem matrix M .

The decomposition rule of the nonclausal calculus can be seen as a generali-
sation of the start rule. We give its translation to LK in Figure 10.

Connection Calculus LK

∧
i
〈Xi,M, Path〉

D
M ′,M, Path

where {X1, . . . , Xn} ∈M ′

[
X1,M

′, Path `
]

. . .
[
Xn,M

′, Path `
]
∨L

X1 ∨ · · · ∨Xn,M
′, Path `

∀L
∀x.(X1 ∨ · · · ∨Xn),M ′, Path `

∧L
M ′,M , Path `

where ∀x.(X1 ∨ · · · ∨Xn) in M ′

and M ′ = {M ′} ∪M

Fig. 10. LK translation of the decomposition rule.

Let us now consider a nonclausal extension step applied to 〈L,M,Path〉. Let
C1 denote the e-clause of M with respect to Path ∪ {L} that was used for the
extension step. By construction of M mentioned above, C1 is some clause in
M1 ∈M . Furthermore, let β1 be the β-clause of C1 with respect to L. Then we
can find some m such that M1, C1 and β1 can be written as in Figure 11.

Mi =

· · ·

Ci︷ ︸︸ ︷

Xi,1
...

Mi+1
...

Xi,ni

· · ·

if i ≤ m

L otherwise

βi =

Xi,1
...

[βi+1]
...

Xi,ni

if i ≤ m

[] otherwise

Fig. 11. Definition of matrix Mi, clause Ci, and β-clause βi.

The translation of the nonclausal extension rule is shown in Figure 12. We
first transform L,M , Path ` to M0, P ` which is equivalent due to M0 = M .
We then determine M1 ∈M and put it into the context by contraction (CL).

Now we recursively prove the sequent Mi,M
i−1, P ` as follows: If Mi is the

literal L, we prove the sequent L,Mm, P ` with the ⊥L rule. Otherwise, we
proceed in the following way: First, we put the appropriate clause Ci of Mi that
corresponds to βi into the context with the ∧L rule. In the same step, we merge
Mi with M i−1, yielding M i. After the instantiation of Ci with the ∀L rule, the

Certification of Nonclausal Connection Tableaux Proofs 11

[
X1,1,M

1, P `
]
· · ·

[Xm,1,M
m, P `] · · ·

⊥L
L,Mm, P ` · · · [Xm,nm ,M

m, P `]
∨L

...
∧L

M2,M
1, P ` · · ·

[
X1,n1 ,M

1, P `
]
∨L

X1,1 ∨ · · · ∨X1,n1 ,M
1, P `

∀L
∀x.(X1,1 ∨ · · · ∨X1,n1),M1, P `

∧L
M1,M

0, P `
CL

M0, P `
L,M , Path `

where M j = M ∪ {Mi | 1 ≤ i ≤ j} and P = Path ∪ {L}

Fig. 12. LK translation of the nonclausal extension rule.

clause elements Xi,1 to Xi,ni
give rise to several proof branches where all but

one are closed by translation of the proof branches of the connection proof. The
one remaining clause element Mi+1 gives rise to a sequent Mi+1,M

i, P `, which
we translate by recursion. This concludes the translation of the extension rule.
Example 4. Consider the nonclausal proof given in Figure 7. We show its trans-
lation to LK in Figure 13, where boxed sequents indicate words of the original
proof. We use F from Example 1 to define

M0 = {F}
M1 = M0 ∪ {¬P (s2a) ∧ (P (sa) ∨ ¬Q)}
M2 = M1 ∪ {¬P (s3a) ∧ (P (s2a) ∨ ¬Q)}

The question might arise whether the proof translation necessarily needs
to keep a set of matrices M containing potential extension clauses. Could one
instead reconstruct extension clauses from the initial M and Path? The next
example shows that extending M with extension clauses is indeed necessary.
Example 5. Consider the extension step that closes 〈P (sx̂), M̂ , {Q,P (sx′)}〉 in
Figure 7. The extension clause used in this extension step is C4 from Example 2.
However, the closest to C4 we can obtain from M and {Q,P (sx′)} ∪ {P (sx̂)} is[

¬P (x′)[[
¬P (s2x′)

]]]

As performed by our translation, extending M in the translation of the extension
step for 〈P (sx′),M ′, {Q}〉 with the α-related clause [¬P (s2x′)] corresponding to
C4 allows us to translate the extension step for P (sx̂) with precisely that clause.

The LK translation uses Path only for reduction steps and M for extension
steps, whereas the original calculus uses Path for both. Future work might explore
whether a calculus closer to the translation yields more efficient proof search.

12 Michael Färber and Cezary Kaliszyk

⊥L
P (a),M0, {Q,¬P (a)} `

∧L
M,M0, {Q,¬P (a)} `

CL
M0, {Q,¬P (a)} `

¬P (a),M0, {Q} `

⊥L
¬P (sa),M1, {Q,P (sa)} `

⊥L
¬P (s2a),M2, {Q,P (sa), P (s2a)} `

∧L
¬P (s2a) ∧ (P (sa) ∨ ¬Q),M2, {Q,P (sa), P (s2a)} `

CL
M2, {Q,P (sa), P (s2a)} `

P (s2a),M2, {Q,P (sa)} `
⊥L

¬Q,M2, {Q,P (sa)} `
∨L

P (s2a) ∨ ¬Q,M2, {Q,P (sa)} `
∧L

¬P (s3a) ∧ (P (s2a) ∨ ¬Q),M1, {Q,P (sa)} `
∨L

¬P (sa) ∨ (¬P (s3a) ∧ (P (s2a) ∨ ¬Q)),M1, {Q,P (sa)} `
∀L

∀x.¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)),M1, {Q,P (sa)} `
∧L

M,M1, {Q,P (sa)} `
CL

M1, {Q,P (sa)} `

P (sa),M1, {Q} `
⊥L

¬Q,M1, {Q} `
∨L

P (sa) ∨ ¬Q,M1, {Q} ` ∧L
¬P (s2a) ∧ (P (sa) ∨ ¬Q),M0, {Q} `

∨L
¬P (a) ∨ (¬P (s2a) ∧ (P (sa) ∨ ¬Q)),M0, {Q} ` ∀L
∀x.¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)),M0, {Q} ` ∧L

M,M0, {Q} ` CL
M0, {Q} `

Q,M0, {} `
∧L

M0 `

Fig. 13. Translation of the nonclausal proof in Figure 7 to LK.

Certification of Nonclausal Connection Tableaux Proofs 13

Theorem 1. Let 〈X,M,Path〉 be a word in the nonclausal connection
proof Γ and let M contain the extension clauses of M with respect to
Path ∪ {X}. For every premise 〈X ′,M ′, Path′〉 of the proof step in Γ with
the conclusion 〈X,M,Path〉, the translation [X,M , Path `] has a sub-proof
tree [X ′,M ′, Path′ `] such that M ′ contains the extension clauses of M ′ with
respect to Path′ ∪ {X ′}.
Proof. We distinguish the calculus rule to close 〈X,M,Path〉. The reduction rule
is trivial because it has no premises.

Let us first consider the start rule in Figure 8. The translation of the start
rule yields several proof trees of the shape [Xi,M , {} `], where M = {M}. For
every i, the extension clauses of M with respect to Xi are all the clauses in M ,
as was illustrated in Example 2. Because all clauses in M are also contained in
M , the start rule satisfies the property.

Now for the decomposition rule shown in Figure 10. By hypothesis, M
contains the extension clauses of M with respect to Path ∪ {M ′}. This implies
that M contains all clauses that recursively contain M ′. For every i, Xi is
contained in M ′, therefore M ′ contains all clauses that recursively contain Xi,
satisfying condition (a) of Definition 3. Furthermore, those clauses α-related
to Xi that are required by condition (b) and that are not contained in M are
M ′ \ {∀x.(X1 ∨ · · · ∨Xn)} and thus in M ′.

Finally we treat the extension rule shown in Figure 12. By hypothesis, M
contains the extension clauses of M with respect to Path ∪ {L}. We have to
show that for each i and j, the extension clauses of M with respect to P ∪{Xi,j}
correspond to the clauses in M i. For every i and j, we have that M i contains
all clauses that recursively contain Xi,j , which in addition to some clauses in
M are the clauses Ck (see Figure 11) with k ≤ i. This covers condition (a) of
Definition 3. Furthermore, those clauses α-related to Xi,j that are required by
condition (b) and that are not contained in M are the clauses Mk \ {Ck} with
k ≤ i, which are contained in M i. ut
Corollary 1. For every formula F , if Γ is a nonclausal connection proof of
M(F), then the translation [Γ `] is an LK proof of M(F) `.
Proof. By induction on Γ and Theorem 1.

In four large test sets of nonclausal and clausal connection proofs, all translated
proofs yielded by our implementations of the proof translations in this section
are successfully verified by an interactive theorem prover, see section 6.

5 Implementation

HOL Light is an interactive theorem prover developed by Harrison in OCaml [16].
leanCoP and nanoCoP are clausal and nonclausal connection provers developed
by Otten in Prolog [30, 27]. We developed proof search tactics for HOL Light
based on leanCoP/nanoCoP and the proof translation shown in section 4.7
To ease integration with HOL Light, all parts of the tactics are written in
7 The source code can be retrieved at http://cl-informatik.uibk.ac.at/users/mfaerber/
tactics.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html
http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html

14 Michael Färber and Cezary Kaliszyk

OCaml, including functional implementations of leanCoP and nanoCoP using
the compressed calculi in section 3.

The structure of the proof search tactics is shown in Figure 14: First, we
convert given proof goals from higher-order logic to first-order logic. For this,
we reuse a large part of the MESON [15] infrastructure, such as instantiation
of higher-order axioms. This leaves us with first-order problems of the shape
(A1 ∧ · · · ∧ An) =⇒ C, on which we run leanCoP and nanoCoP in the same
interpreter as HOL Light [11]. Finally, we translate the resulting connection
proofs to HOL Light proofs: We implemented the proof translation shown in
section 4 such that it directly yields HOL Light instead of LK proofs.

HOL
problem

Conversion
to FOL

M(F)

M̄(F)

nanoCoP

leanCoP

Nonclausal
proof translation

Clausal
proof translation

HOL
proof

HOL
proof

Fig. 14. Structure of the proof search tactics in HOL Light.

6 Evaluation

We compare the performance of our proof search tactics based on leanCoP 2.1
and nanoCoP 1.0 with the Metis [10] and MESON [15] tactics. Similarly to [19],
we disable splitting for MESON. We evaluate the tactics on two kinds of problems
derived from HOL Light: toplevel and MESON problems.

A toplevel problem results from any HOL Light theorem that is given a
name on the OCaml toplevel. It consists of the conclusion of the theorem and
the premises used to prove it. A MESON problem results from any call to
the MESON tactic. It consists of the statement proven by MESON as well as
the premises given to the MESON tactic. Note that toplevel problems are not
necessarily solvable by first-order tactics, whereas MESON problems are, because
the (first-order) tactic MESON is able to prove them.

We evaluate both toplevel and MESON problems with some tactic by letting
the tactic find a proof of the problem conclusion using the problem premises. The
problem counts as proven if the tactic finds a proof within a given time limit. We
consider toplevel (“top”) and MESON (“msn”) problems from core HOL Light
(“HL”) and the Flyspeck project (“FS”), which finished in 2014 a formal proof of
the Kepler conjecture [14]. We use the Git version 08f4461 of HOL Light from
March 2017, running every tactic with a timeout of 10 seconds on each problem.
We use a 48-core server with AMD Opteron 6174 2.2GHz CPUs, 320 GB RAM,

https://github.com/jrh13/hol-light/commit/08f4461
https://github.com/jrh13/hol-light/commit/08f4461

Certification of Nonclausal Connection Tableaux Proofs 15

Listing 1.1. Flyspeck problem WLOG_LINEAR_INJECTIVE_IMAGE_ALT.
!P. (!f s. P s /\ linear f ==> P (IMAGE f s))

==> (!f. linear f /\ (!x y. f x = f y ==> x = y)
==> (!s. P (IMAGE f s) <=> P s))

==>
!P f s. (!g t. P t /\ linear g ==> P (IMAGE g t)) /\

linear f /\ (!x y. f x = f y ==> x = y)
==> (P (IMAGE f s) <=> P s)

and 0.5 MB L2 cache per CPU. Each problem is always assigned one CPU. We
run all provers with a timeout of 10 seconds per problem.

The results are shown in Table 1: Metis solves the largest number of prob-
lems among all considered datasets. The comparatively low performance of
leanCoP/nanoCoP inside HOL Light is due to their heavy use of array opera-
tions for unification: Array access is more than 30 times faster in native OCaml
programs compared to programs compiled in OCaml’s toplevel (as used in HOL
Light). When compiled as native OCaml programs, we have shown that lean-
CoP/nanoCoP solve more problems than Metis on four out of six datasets that
we evaluated [11]. Running leanCoP/nanoCoP outside HOL Light and translat-
ing the resulting proofs inside HOL Light would thus very likely increase the
performance of the corresponding tactics.

Table 1. Number of problems solved by various HOL Light tactics.

Prover HL-top HL-msn FS-top FS-msn

Problems in dataset 2499 1119 27112 44468

Metis 807 1029 4626 42829
MESON 736 900 4221 39227
leanCoP+cut 724 948 3714 39922
leanCoP−cut 717 844 3800 38528
nanoCoP+cut 538 802 2743 34213
nanoCoP−cut 550 811 2351 34769

Example 6. Listing 1.1 shows a Flyspeck toplevel problem which among the
evaluated tactics, only nanoCoP can solve in the given time limit of 10 seconds.
It is proven by nanoCoP in 2.27 seconds.

7 Related Work

Certification of ATP found proofs has been especially important for the integration
of ATPs into interactive proof assistants. Such components provide automation in

16 Michael Färber and Cezary Kaliszyk

the form of proof tactics for smaller steps. HOL Light includes the certified proof
producing model elimination prover MESON [15]. The paramodulation-based
prover Metis [17] was designed with a small certified proof core to simplify its
integration with interactive theorem provers [10]. There exists a proof-certifying
version of the intuitionistic first-order automated theorem prover JProver for
Coq and Nuprl [33, 20] as well as a proof certifying version of an ordered
paramodulation prover for Matita [1]. Proofs from several SAT/SMT solvers can
be certified in Coq [9] and Isabelle [4]. The logical framework Dedukti allows for
the import of superposition proofs from iProver [6] as well as of tableaux proofs
from Zenon [7]. The GAPT framework provides translations for a multitude
of calculi and automated theorem provers, such as Vampire, E, Prover9, and
leanCoP [8, 31].

Among all provers whose proof certification is described in the cited work
above, the only nonclausal one is JProver. However, its performance is far behind
nanoCoP and the intuitionistic version of nanoCoP, nanoCoP-i, with nanoCoP
and nanoCoP-i solving about three times as many problems as JProver on the
TPTP and the ILTP benchmarks, respectively [27, 28]. On the other hand, unlike
for nanoCoP-i, there already exists a proof certification method for JProver in
an intuitionistic proof assistant, namely in Coq. This leaves as future work the
extension of the proof certification in this paper to an intuitionistic setting, in
order to enable stronger automated proof search via nanoCoP-i in proof assistants
like Coq.

8 Conclusion

We proposed a translation from clausal and nonclausal connection proofs to LK,
yielding a sound proof certification and a proof search tactic for HOL Light. The
tactic certifies every nanoCoP and leanCoP proof output in our evaluation.

Future work includes the improvement of the proof search tactics, for exam-
ple by calling external instances of nanoCoP/leanCoP, but also by improved
preprocessing of the tactics, for example by reordering the clauses in the ITP
before proof search [29]. The proof search tactic could also be integrated into
other ITPs, such as Isabelle [34] and Coq [2]. The latter being an intuitionistic
system motivates the translation of nonclassical connection proofs, such as given
by ileanCoP and nanoCoP-i [25, 28]. Finally, we hope that the present article
helps to prepare the ground for ITP-checked proofs of soundness/completeness
of connection calculi as well as of their implementations.

Acknowledgements We thank the reviewers of JAR and TABLEAUX for their
valuable comments as well as Jens Otten for clarifying details of his work on
nonclausal connection proving. This work has been supported by a doctoral
scholarship of the University of Innsbruck and the European Research Council
(ERC) grant no. 714034 SMART.

Bibliography

[1] A. Asperti and E. Tassi. Higher order proof reconstruction from
paramodulation-based refutations: The unit equality case. In M. Kauers,
M. Kerber, R. Miner, and W. Windsteiger, editors, MKM, volume 4573 of
LNCS, pages 146–160. Springer, 2007.

[2] Y. Bertot. A short presentation of Coq. In Mohamed et al. [22], pages 12–16.
[3] W. Bibel. Automated theorem proving. Artificial intelligence. Vieweg, second

edition, 1987.
[4] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer

with SMT solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors,
CADE-23, volume 6803 of LNCS, pages 116–130. Springer, 2011.

[5] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering
towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

[6] G. Burel. A shallow embedding of resolution and superposition proofs into
the λΠ-calculus modulo. In J. C. Blanchette and J. Urban, editors, PxTP,
volume 14 of EPiC Series in Computing, pages 43–57. EasyChair, 2013.

[7] R. Cauderlier and P. Halmagrand. Checking Zenon Modulo proofs in Dedukti.
In Kaliszyk and Paskevich [18], pages 57–73.

[8] G. Ebner, S. Hetzl, G. Reis, M. Riener, S. Wolfsteiner, and S. Zivota. System
description: GAPT 2.0. In Olivetti and Tiwari [24], pages 293–301.

[9] B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz, A. Reynolds, and C. W.
Barrett. SMTCoq: A plug-in for integrating SMT solvers into Coq. In
R. Majumdar and V. Kuncak, editors, CAV, volume 10427 of LNCS, pages
126–133. Springer, 2017.

[10] M. Färber and C. Kaliszyk. Metis-based paramodulation tactic for HOL
Light. In G. Gottlob, G. Sutcliffe, and A. Voronkov, editors, GCAI, volume 36
of EPiC Series in Computing, pages 127–136. EasyChair, 2015.

[11] M. Färber. Learning Proof Search in Proof Assistants. PhD thesis, Universität
Innsbruck, 2018.

[12] G. Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935.

[13] M. Gordon. From LCF to HOL: a short history. In G. D. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language, and Interaction, Essays in Honour
of Robin Milner, pages 169–186. The MIT Press, 2000.

[14] T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen,
T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. H. T. Ta, T. N. Tran,
D. T. Trieu, J. Urban, K. K. Vu, and R. Zumkeller. A formal proof of the
Kepler conjecture. Forum of Mathematics, Pi, 5, 2017.

[15] J. Harrison. Optimizing proof search in model elimination. In M. A.
McRobbie and J. K. Slaney, editors, CADE-13, volume 1104 of LNCS, pages
313–327. Springer, 1996.

18 Michael Färber and Cezary Kaliszyk

[16] J. Harrison. HOL Light: An overview. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, TPHOLs, volume 5674 of LNCS, pages 60–66.
Springer, 2009.

[17] J. Hurd. First-order proof tactics in higher-order logic theorem provers. In
M. Archer, B. D. Vito, and C. Muñoz, editors, Design and Application of
Strategies/Tactics in Higher Order Logics (STRATA), number NASA/CP-
2003-212448 in NASA Technical Reports, pages 56–68, Sept. 2003.

[18] C. Kaliszyk and A. Paskevich, editors. PxTP, volume 186 of EPTCS, 2015.
[19] C. Kaliszyk, J. Urban, and J. Vyskočil. Certified connection tableaux proofs

for HOL Light and TPTP. In X. Leroy and A. Tiu, editors, CPP, pages
59–66. ACM, 2015.

[20] C. Kreitz and S. Schmitt. A uniform procedure for converting matrix proofs
into sequent-style systems. Inf. Comput., 162(1-2):226–254, 2000.

[21] R. Letz and G. Stenz. Model elimination and connection tableau procedures.
In Robinson and Voronkov [32], pages 2015–2114.

[22] O. A. Mohamed, C. A. Muñoz, and S. Tahar, editors. TPHOLs, volume
5170 of LNCS. Springer, 2008.

[23] A. Nonnengart and C. Weidenbach. Computing small clause normal forms.
In Robinson and Voronkov [32], pages 335–367.

[24] N. Olivetti and A. Tiwari, editors. IJCAR, volume 9706 of LNCS. Springer,
2016.

[25] J. Otten. Clausal connection-based theorem proving in intuitionistic first-
order logic. In B. Beckert, editor, TABLEAUX, volume 3702 of LNCS, pages
245–261. Springer, 2005.

[26] J. Otten. A non-clausal connection calculus. In K. Brünnler and G. Metcalfe,
editors, TABLEAUX, volume 6793 of LNCS, pages 226–241. Springer, 2011.

[27] J. Otten. nanoCoP: A non-clausal connection prover. In Olivetti and Tiwari
[24], pages 302–312.

[28] J. Otten. Non-clausal connection calculi for non-classical logics. In R. A.
Schmidt and C. Nalon, editors, TABLEAUX, volume 10501 of LNCS, pages
209–227. Springer, 2017.

[29] J. Otten. Proof search optimizations for non-clausal connection calculi. In
B. Konev, J. Urban, and P. Rümmer, editors, PAAR, volume 2162 of CEUR
Workshop Proceedings, pages 49–57. CEUR-WS.org, 2018.

[30] J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. J.
Symb. Comput., 36(1-2):139–161, 2003.

[31] G. Reis. Importing SMT and connection proofs as expansion trees. In
Kaliszyk and Paskevich [18], pages 3–10.

[32] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

[33] S. Schmitt, L. Lorigo, C. Kreitz, and A. Nogin. JProver: Integrating
connection-based theorem proving into interactive proof assistants. In
R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of LNCS,
pages 421–426. Springer, 2001.

[34] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In
Mohamed et al. [22], pages 33–38.

	Certification of Nonclausal Connection Tableaux Proofs

