
Mac Lane’s Comparison Theorem for the Kleisli Construc-
tion Formalized in Coq

Burak Ekici and Cezary Kaliszyk

Abstract. (co)Monads are used to encapsulate impure operations of a computation. A (co)monad
is determined by an adjunction and further determines a specific type of adjunction called the
(co)Kleisli adjunction. Mac Lane introduced the comparison theorem which allows comparing these
adjunctions bridged by a (co)monad through a unique comparison functor. In this paper we specify
the foundations of category theory in Coq and show that the chosen representations are useful by
certifying Mac Lane’s comparison theorem and its basic consequences. We also show that the
foundations we use are equivalent to the foundations by Timany. The formalization makes use of
Coq classes to implement categorical objects and the axiom uniqueness of identity proofs to close
the gap between the contextual equality of objects in a categorical setting and the judgmental
Leibniz equality of Coq. The theorem is used by Duval and Jacobs in their categorical settings to
interpret the state effect in impure programming languages.

Keywords. Adjunctions, monads, Kleisli Construction, comparison theorem, Coq.

1. Introduction

Mac Lane’s comparison theorem for the (co)Kleisli construction relates two adjunctions bridged by a
(co)monad via the unique comparison functor. This theorem is well known and crucial in the domain of
programming language semantics since it helps build interpretations of impure computations based on
(co)monads and adjunctions. This paper deals with the Coq formalization of the mentioned theorem
and can be seen as a first step towards providing some formal recipe to study programming language
semantics using (co)monads. In this section, we briefly describe computational effects, some ways to
formalize them, highlight the role of the comparison functor in some of these formalizations. We end
the section with an intuition of the comparison theorem implementation in Coq.

A function in mathematics always returns the same result on the same input. The result depends
only on the input arguments. However, in programming, a program might do other things besides
computing a result. It might be handling an exceptional case, caught by a non-terminating loop or
stuck in an interaction with the outside world. Such phenomena are known as computational side
effects of programs. Following Moggi’s seminal approach [17], one can interpret computational side
effects in the Kleisli category of a monad or dually in a coKleisli category of a comonad. For instance,
in Moggi’s computational metalanguage, an effectful operation in an impure language with arguments
in X that returns a value in Y is interpreted as an arrow from JXK to T JY K in the Kleisli category of
a monad T . Here JXK denotes the object of values of type X and T JY K is the object of computations
that return values of type Y . The monad-comonad duality in modeling effects may be understood in
general terms as a symmetric correspondence between construction and observation among different
sort of computational effects, for instance between raising an exception and looking up a state [8].

This work has been supported by the European Research Council (ERC) grant no. 714034 SMART.

2 Burak Ekici and Cezary Kaliszyk

Plotkin and Pretnar [19] presented handlers for algebraic effects by extending Moggi’s classifi-
cation of terms (values and computations) with a third level called handlers. This approach has then
been implemented in the programming language Eff [1] to handle effects.

Jacobs [13] introduced the state-and-effect triangles, depicted in Figure 1, which capture the
semantics of the program state and their corresponding logics in a unified way within a triangle form.

KL(T)

!!

L
++ A

G

		

K --

a
= =

EM(T)

||

a

B

F

HHbb <<

`

T=GF

ZZ

Figure 1. The triangle form by Jacobs.

In this setting, KL(T) denotes the Kleisli category of the monad T = GF while EM(T) is the
Eilenberg-Moore category of the algebras of T . The comparison theorem for the Kleisli construction
(see Theorem 2.7) gives a unique comparison functor L : KL(T) → A such that the left half of the
diagram commutes. The functor L maps computations to their predicate transformers. This could
be understood as interpreting programs via their actions on some predicates that specify what holds
at which point of the computation. One sort of such program semantics is the weakest precondition
calculus introduced by Hoare [11]. The comparison theorem for the Eilenberg-Moore construction,
that is outside the scope of this paper, also gives a unique comparison functor K : A → EM(T)
making the right half of the diagram above commutative. The functor K ◦L : Kl(T)→ EM(T) maps
each computation to the algebra that explain the state change during that computation.

Duval et al. [6] proposed another paradigm to formalize effects by mixing effect systems [14]
and algebraic theories, named the decorated logic. In a decorated logic, a term can be classified in
three different sorts with respect to its interaction with a given effect. It can be pure, an accessor or a
modifier. For instance, a state accessor may read from the program state but never modifies it while
a modifier has the right to manipulate the state. The pure and accessor terms may be understood as
Moggi’s values and computations, and the modifiers can be seen as Plotkin and Pretnar’s handlers. In
Duval’s approach, pure terms with respect to a computational effect are interpreted in a base category
C with (co)monad on it. Accessor and modifier terms are then respectively interpreted in the Kleisli
category of the monad and the base category C (the codomain of the monad endofunctor) or dually
in the coKleisli category of the comonad and the base category C .

C

D

--

GD

,,
>

D
def
= −×S

��
CD

FD

kk
FD, T

,,
⊥

T

��
CD,T

L

��

GD, T

ll

=

C

Figure 2. Interpreting the Decorated Logic for the state.

For instance, a pure term f (0) : X → Y in the logic which models the global state effect (decorated
logic for the state [7]) is interpreted as a map f : X → Y in the base category C . An accessor term
f (1) : X → Y as an arrow f [: X → Y in CD which implicitly corresponds to a map f : X × S → Y
in the base category C . Similarly, a modifier term f (2) : X → Y is interpreted as a map f : X × S →
Y × S in C . Notice that terms are annotated with “decorations” (super-scripted) that describe what
computational (side) effect evaluation of a term may involve, and the use of decorations keeps term
signatures clear of the state structure S. This allows the logic to abstract from the state and work

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 3

with different implementations of the state structure. The decorations come with conversion rules
that basically say that a pure term can be seen as an accessor or a modifier, and similarly an accessor
term can be seen as a modifier term on demand. The former conversions are interpreted by the functor
GD and D respectively while the latter by FD,T . Obviously, for these conversions to be sound, the
interpreting functors must be faithful so that one can keep track of terms that are converted from the
“lower” annotation/decoration levels. Looking closer into the categorical settings of an interpretation
of such logic, depicted in Figure 2, we can say that the monad T is handled by the coKleisli adjunction
FD a GD : C → CD and further determines a Kleisli adjunction FD,T a GD,T : CD,T → CD. The
comparison theorem gives a unique comparison functor L : CD,T → C such that equations L◦FD,T =
FD and GD ◦L = GD,T hold. It is a special case of the theorem where the category CD,T is indeed the
full image category of the endofunctor D which is then decomposed by L into L ◦ FD,T ◦GDf = Df
for each f : X → Y in C , and L is faithful1. Now, the soundness of the all decoration conversions
depends on the faithfulness of the functors GD and FD,T . Also, the conversion from the decoration
(0) to (2) can now safely be factorized into first converting from (0) to (1) and then from (1) to (2).

To sum up briefly, the comparison theorem is crucial in the domain of computational effects as
it is used by Duval and Jacobs to model the state effect.

1.1. Contribution

We refine the paper proof of Mac Lane’s comparison theorem for the Kleisli construction. We then
formalize the basics of category theory in Coq up to a proof of the mentioned theorem. We show a
number of basic consequences that follow from the theorem as well as an equivalence between our
foundation of category theory and other Coq developments. The sources of the formalization are
explained in Sections 3.2 and 3.3, and can be downloaded from the link below:

https://github.com/ekiciburak/ComparisonTheorem-MacLane/tree/completeProof

For the organization of the files, please refer to appendix A.

1.2. Organization of the paper

In Section 2 we give a paper proof to the comparison theorem, since it has not been given in the
book [15]. Then we explain a certification of this proof in a Coq implementation. We start by comparing
the existing approaches to formalize category theory and our design choices in Section 3.1. Then, in
Section 3.2 we summarize a formalization in Coq of categorical objects that appear in the theorem
statement. Our formalization benefits from the use of Coq type classes and is in this respect similar
to the approaches by Gross et al. [10], Timany et al. [22, 21] John Wiegley [24]. The use of type
classes is a very suitable way of defining categorical objects. This way we combine, in a type class,
the characterization of the object that is being defined, usually as expressions in the Type universe,
and the coherence conditions that the provided characterization needs to respect as the Prop universe
instances. We give, in Section 3.3, a Coq proof of the comparison theorem in which we assume the
uniqueness of identity proofs (UIP) and proof irrelevance. We make use of the former to close the gap
between Coq’s judgmental (Leibniz) equality and the contextual equality in categorical settings: we
fail in some cases showing that two categorical objects are judgmentally equal since they are equal only
contextually. We use the latter in showing that two instances of the same class are equal in satisfying
the coherence conditions that live in Coq’s Prop. Also, we benefit from the functional extensionality
axiom in proving, for instance, that two arrows in a category are the same.

A preliminary version of this paper, with an incomplete proof formalization, was presented at
Formal Mathematics for Mathematicians workshop [9].

2. Adjoint Functors and Monads

Adjunctions and monads are objects that can be derived from one another. Every adjunction gives
raise to a monad but only some specific type of adjunctions come out of monads. In this section, we

1See the Coq proof of the statement in the attached library, in UseCase.v file. The proof generalizes the state comonad.

4 Burak Ekici and Cezary Kaliszyk

show how to turn adjunctions into monads and how to handle Kleisli adjunctions from monads. We
then give a proof of Mac Lane’s comparison theorem.

Definition 2.1. Let C and D be two categories. The functors F : C → D and G : D → C form an
adjunction F a G : D → C iff there exist natural transformations η : IdC ⇒ GF and ε : FG ⇒ IdD

with the following coherence conditions satisfied:

F
Fη //

idF

))

FGF

εF
��

=

F

G
ηG //

idG

))

GFG

Gε
��

=

G

εFX ◦ FηX = idFX for each X in C (2.1)

GεA ◦ ηGA = idGA for each A in D (2.2)

Informally speaking, an adjunction is a possible similarity measure between functors. It is a
concept such as equality, equivalence and isomorphism, considered as the weakest notion among them.
It can be understood as a further weakening of an isomorphism. If we look for isomorphisms in between
two functors, say F and G, we first require them to be defined from the same source category to the
same target category. Only then, we search for two natural transformations between F and G defined
in opposite directions such that their composition gives the identity natural transformation over the
functor F or G depending on the order of composition.

An adjunction is weaker. It can relate two functors defined between the same categories but in
the opposite directions, i.e., F : C → D and G : D → C . Obviously, we cannot look for an equality,
equivalence nor isomorphism between F and G since they do not live in the same type, from a type-
theoretic point of view; meaning they cannot be directly compared. Indeed, this is the point where
the notion of adjointness comes into the play by providing a possible way to compare them via their
compositions. Therefore, for the functors F : C → D and G : D → C to qualify as adjoints, there
need to be two natural transformations η : IdC ⇒ GF and ε : FG ⇒ IdD satisfying the coherence
conditions stated in Equations (2.1) and (2.2). The former can be depicted and explained as follows:

X
Idf //

ηX

��
=

Y

ηY

��
GFX

GFf
// GFY

F
((FX

F (Idf) //

FηX
��

=

Id(FX)

$$

=

FY

FηY
��

Id(FY)

zz

FGFX
FGFf

//

εFX

��
=

FGFY

εFY

��
FX

Ff
// FY

=

If F and G are adjoint functors, then this condition intuitively tells us that the following case holds
for each map f : X → Y in the category C : we have maps Idf : X → Y and GFf : GFX → GFY also
in C . Using the natural transformation η, we can deform the map Idf into GFf . We then transport
this deformation through the functor F from the category C into the category D . There, using the
natural transformation ε, we can do an inverse deformation (or better a formation) and form the map
f back in the form of Ff since we are in D . Note that we independently have the other very similar
condition at Equation (2.2) satisfied.

Example 1. In the Calculus of Inductive Constructions (CIC), the conjunction and implication over
propositions are adjoint operations. To show this, we first take the Prop universe as the category of
propositional formulas and entailments, and name it CatP. It is then possible to form two endo-functors

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 5

F,G : ∀p ∈ obj(CatP), CatP → CatP as

F (p) = λq.p ∧ q
F (p)f = λ(H : p ∧ a).match H with conj x y ⇒ conj x (f y),∀f : a→ b

G(p) = λq.p =⇒ q

G(p)f = λ(H : p =⇒ a)(x : p).f (H x), ∀f : a→ b

We now define two natural transformations
∀η : ∀p ∈ obj(CatP), IdCatP ⇒ G(p) ◦ F (p) and ∀ε : ∀p ∈ obj(CatP), F (p) ◦G(p)⇒ IdCatP as

η(p) = λ(y : id q)(x : p).conj x y, ∀q ∈ obj(catP)

ε(p) = λ(H : p ∧ (p =⇒ q)).match H with conj x y ⇒ y x,∀q ∈ obj(catP)

where conjx y is a proof of x ∧ y.
It is straightforward to check that the functors F and G form an adjunction through η and ε

by simply showing that Equations (2.1) and (2.2) are satisfied. It is interesting to notice that ε is
modus-ponens.

There are other equivalent ways to formulate the notion of adjunction. For instance, the following
Proposition 2.2 makes use of an isomorphism of hom-functors and may better highlight the connection
between an isomorphism and an adjunction. Also, an adjunction can be seen as a generalization of
the “equivalence” between categories.

Proposition 2.2. An adjunction F a G : D → C determines a bijection of natural transformations
defined between hom-functors

ϕX,A : HomD(FX, A)
∼=−→ HomC (X, GA) (2.3)

for each X ∈ C and A ∈ D as follows:

ϕX,Af = Gf ◦ ηX : X → GA for each f : FX → A (2.4)

ϕ−1X,Ag = εA ◦ Fg : FX → A for each g : X → GA. (2.5)

Definition 2.3. A monad T = (T, η, µ) in a category C consists of an endo-functor T : C → C equipped
with two natural transformations

η : IdC ⇒ T µ : T 2 ⇒ T (2.6)

such that the following diagrams commute:

T 3 µT //

Tµ
��

=

T 2

µ

��
T 2

µ
// T

T
ηT //

Tη
��

idT

))

T 2

=
µ

��
T 2

=

µ
// T

µ ◦ Tµ = µ ◦ µT µ ◦ Tη = µ ◦ ηT (2.7)

µ ◦ ηT = idT (2.8)

µ ◦ Tη = idT (2.9)

The natural transformations µ and η can be respectively seen as the binary multiplication and the
identity operations of the monad. Then, the coherence condition given by the above diagram on the
left (aka the associativity square) ensures that the multiplication is an associative operation. While
the one on the right (aka the unit triangles) assures the neutrality of the identity with respect to the
multiplication.

Example 2. A monad is in fact a monoid in the category of endo-functors with its identity being
unit η : IdC → T of the monad and its binary operation being the multiplication µ : T 2 → T . The
properties of the monoidal identity meet the coherence conditions at unit triangles. The associativity
square can be formed by the associativity of the monoid’s binary operation.

6 Burak Ekici and Cezary Kaliszyk

Proposition 2.4. An adjunction F a G : D → C determines a monad on C and a comonad on D as
follows:

• The monad (T, η, µ) on C has endo-functor T = GF : C → C , unit η : IdC ⇒ T where ηX =
ϕX,FX(idFX) and multiplication µ : T 2 ⇒ T such that µX = G(εFX).
• The comonad (D, ε, δ) on D has endo-functor D = FG : D → D , counit ε : D ⇒ IdD where
εA = ϕ−1GA,A(idGA) and co-multiplication δ : D ⇒ D2 such that δA = F (ηGA).

Proposition 2.5. Each monad (T, η, µ) on a category C determines a Kleisli category CT and an
associated adjunction FT a GT : CT → C as follows:

C
FT

,,⊥

T

��
CT

GT

ll

• The categories C and CT have the same objects and there is a morphism f [: X → Y in CT for
each morphism f : X → TY in C .
• For each object X in CT , the identity arrow is idX = h[: X → X in CT where h = ηX : X →
TX in C .
• The composition of a pair of morphisms f [: X → Y and g[: Y → Z in CT is given by the Kleisli

composition: g[◦ f [= h[: X → Z where h = µZ ◦ Tg ◦ f : X → TZ in C .
• The functor FT : C → CT is the identity on objects. On morphisms,

FT f = (ηY ◦ f)[, for each f : X → Y in C . (2.10)

• The functor GT : CT → C maps each object X in CT to TX in C . On morphisms,

GT (g[) = µY ◦ Tg, for each g[: X → Y in CT . (2.11)

Below lemma is used in Theorem 2.7 to prove the uniqueness of the comparison functor.

Lemma 2.6. Let F a G : D → C be an adjunction. For each f : X → GY in C , and g, h : FX → Y
in D , if f = Gg ◦ ηX and f = Gh ◦ ηX then g = h.

Proof. By assumption, we have Gg ◦ ηX = Gh ◦ ηX thus εY ◦ F (Gg ◦ ηX) = εY ◦ F (Gh ◦ ηX) which is
εY ◦FGg ◦FηX = εY ◦FGh ◦FηX . The naturality of ε gives g ◦ εFX ◦FηX = h ◦ εFX ◦FηX . Finally,
since εFX ◦ FηX = idFX , we conclude that g = h. �

Theorem 2.7. (The comparison theorem for the Kleisli construction [15, Ch. VI, §5, Theorem 2]) Let
F a G : D → C be a adjunction and let (T, η, µ) be the associated monad on C . Then, there is a
unique comparison functor L : CT → D such that GL = GT and LFT = F , where CT is the Kleisli
category of (T, η, µ), with the associated adjunction FT a GT : CT → C .

C
FT

,,

F

##

⊥

T

��

`

CT
GT

ll

=

!L

��
D

G

cc

Intuitively, one can start with an arbitrary adjunction F ` G : D → C . This determines a monad T
on the base category C and dually a comonad on the category D as stated in Proposition 2.4. Later,
the monad T creates a Kleisli category CT together with a Kleisli adjunction FT a GT : CT → C as in
Proposition 2.5. The theorem states that one can compare these arbitrary and structured adjunctions
using a functor L : CT → D (aka comparison functor) which is unique and making the above diagram
commutative in both directions.

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 7

Proof. Let us first assume that L : CT → D is a functor satisfying GL = GT and LFT = F . So that
the below given diagram commutes.

C
FT //

idC

��
=

CT

L

��

GT //

=

C

idC

��
C

F
// D

G
// C

Let θX,Y : HomCT
(FTX,Y)

∼=−→ HomC (X,GTY) be a bijection associated to the adjunction FT a GT
provided by Proposition 2.2. Similarly, let ψX,Y : HomD(FX, Y)

∼=−→ HomC (X,GY) be a bijection
associated to the adjunction F a G. Since units of adjunctions FT a GT and F a G are the unit η of
the monad (T, η, µ) by [15, Ch. IV, §7, Proposition 1], we obtain the commutative diagram below:

HomCT
(FTX,Y)

θX,Y //

LFT X,Y

��

HomC (X,GTY)

idX,GT Y

��
HomD(LFTX,LY)

=

HomC (X,GTY)

= =

HomD(FX,LY)
ψX,LY // HomC (X,GLY)

Therefore, LFTX,Y = ψ−1X,LY ◦ θX,Y . Using the Equation (2.4) in Proposition 2.2, we have: θX,Y f
[=

GT f
[◦ ηX : X → GTY, for each f [: FTX = X → Y in CT . Since GT f

[= µY ◦ Tf in C , for each
f [: X → Y in CT , by Equation (2.11), we have θX,Y f

[= µY ◦ Tf ◦ ηX : X → GTFTY = GTY.

Thanks to the naturality of η, we get θX,Y f
[= µY ◦ ηTY ◦ f . The monadic axiom µY ◦ ηTY =

idTY yields θX,Y f
[= f : X → GTY . Since GT = GL and FT is the identity on objects, we have

θX,Y f
[= f : X → GLY and LFTY = LY = FY. Now, by Equation (2.5) in Proposition 2.2, we obtain

ψ−1X,LY f = εLY ◦ Ff = εFY ◦ Ff = ψ−1X,FY f for each f : X → GFY in C . Hence ψ−1X,LY (θX,Y f
[) =

ψ−1X,FY f = εFY ◦Ff. In other words, given a functor L satisfying GL = GT and LFT = F , then it must

be such that LX = FX for each object X in CT and Lf [= εFY ◦Ff in D for each f [: X → Y in CT .
We first prove that some map L : CT → D , characterized by LX = X and Lf [= εY ◦ Ff , is

actually a functor satisfying GL = GT and LFT = F :

1. For each X in CT , due to the fact that idX = (ηX)[in CT , we have L(idX) = L((ηX)[) =
εFX ◦ FηX . By [15, Ch. IV, §1, Theorem 1], we get εFX ◦ FηX = idFX = idLX . For each pair
of morphisms f [: X → Y and g[: Y → Z in CT , by Kleisli composition, we obtain L(g[◦ f [) =
εFZ ◦FGεFZ ◦FGFg ◦Ff. Since ε is natural, we have εFZ ◦Fg ◦εFY ◦Ff which is L(g[)◦L(f [)
in D . Hence L : CT → D is a functor.

2. For each object X in CT , LX = FX in D and GLX = GFX = TX = GTX in C . For each
morphism f [: X → Y in CT , Lf [= εFY ◦ Ff in D by definition. Hence, GLf [= GεFY ◦GFf.
Similarly, Equation (2.11) gives GT f

[= GεFY ◦GFf. We get GLf [= GT f
[for each mapping

f [. Thus GL = GT .
3. FT is the identity on objects, thus LFTX = LX = FX. For each morphism f : X → Y in C , we

have FT f = (ηY ◦ f)[in CT , by definition. So that LFT f = L(ηY ◦ f)[= εFY ◦ FηY ◦ Ff. Due
to ε and η being natural, we have εFY ◦ FηY = idFY yielding LFT f = Ff for each mapping f .
Therefore LFT = F .

We additionally need to show that the functor L : CT → D , as characterized before, satisfying the
equations GL = GT and LFT = F is unique. Otherwise put, for each functor R : CT → D satisfying
GR = GT and RFT = F , we need to obtain R = L. Let us show in the following items that the
functors L and R map objects and morphisms in the same way:

8 Burak Ekici and Cezary Kaliszyk

• For each object X in CT , we have LX = FX = RFTX by definition of L and the assumption
RFT = F . Since FT is the identity on objects (see the fourth item in Proposition 2.5), we get
LX = RX.
• For each morphism f [: X → Y in CT , (correspondingly f : X → TY in C), we would end up

with Lf [= Rf [if we can demonstrate that f = G(Lf [) ◦ ηX = G(Rf [) ◦ ηX holds in C , thanks
to Lemma 2.6. We first trivially get f = GT f

[◦ ηX = GT f
[◦ ηX using the assumed equations

GR = GT and GL = GT . Then, we have GT f
[◦ ηX = µY ◦ GFf ◦ ηX by definition of GT .

That amounts to GT f
[◦ ηX = µY ◦ ηGFY ◦ f due to the naturality of η. The monadic axiom

µY ◦ ηGFY = idGFY yields GT f
[◦ ηX = f . Therefore Lf [= Rf [.

We have ∀R : CT → D , GR = GT ∧RFT = F =⇒ R = L thus the functor L is unique. �

Example 3. To demonstrate a use case of the comparison theorem, we start with a comonad D on an
arbitrary category C . Thanks to Proposition 2.5, we get the coKleisli category CD with the coKleisli
adjunction FD a GD : C → CD in association. We further know from the dual of Proposition 2.4 that
the coKleisli adjunction gives us a comonad (which is indeed the D itself) on the base category C
and a monad T on the codomain category CD. By Proposition 2.4 itself, we can obtain the Kleisli
category CD,T of the monad T with the Kleisli adjunction FD,T a GD,T : CD,T → CD. It is obvious
that the category CD,T is the full-image category of the endo-functor of the comonad D which we

started with: it is made of the objects of C , and for each arrow f [] : X → Y in CD,T , there is an
arrow f : DX → DY in C . Now, Theorem 2.7 provides the unique comparison functor L : CD,T → C
with the equations L ◦ FD,T = FD and GD ◦ L = GD,T satisfied. Furthermore, it is possible to prove
the fact that the functors L and GT,D ◦ FT form the full-image decomposition of the endo-functor of
the comonad D. Otherwise put, this endo-functor is indeed L ◦ (FD,T ◦GD) : C → C .

CD

FD, T

--

FD

%%

⊥

T

��

`

CD,T
GD, T

mm

=

!L

��
C

GD

ee

D

ZZ

C
GD //

D

**

CD
FD, T //

FD

%%

=

CD,T

!L

��

=

C

Notice that it is possible to keep building the Kleisli categories over coKleisli categories by subsequent
applications of Propositions 2.5 and 2.4. Such constructions obviously follow a pattern.

C
GD //

D2 //

CD
FD, T // CD,T

=

GD,T,D // CD,T,D
FD,T,D,T // CD,T,D,T

!KooC

For instance the Kleisli category CD,T,D,T built over the coKleisli, Kleisli and coKleisli categories
provided by the comonad D on C is the full-image category of the composition of the endo-functor
of D with itself: it is made of the objects of C and for each arrow f [][] : X → Y in CD,T,D,T ,
there is a corresponding arrow f : D2X → D2Y in C . And, the comparison theorem gives us a
unique functor K : CD,T,D,T → C which decomposes the endo-functor of D composed with itself into
K ◦(FD,T,D,T ◦GD,T,D ◦FD,T ◦GD) : C → C . This means that K ◦(FD,T,D,T ◦GD,T,D ◦FD,T ◦GD)f =
D2f for each f in C .

In general, when there are subsequent dual adjunctions, a coKleisli over a Kleisli or vice versa,
out of the same monad or comonad, the comparison functor provided by Theorem 2.7 can be used
to annihilate these adjunctions in such a way that one basically returns to the initial point up to the
number of annihilations that the endo-functor of the initial monad or comonad composed to itself.

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 9

We have formalized all of the categorical content mentioned so far in Coq, and briefly explain
the formalization in the following Section 3.

3. Coq Formalization

3.1. Related Work: Category Theory in Proof Assistants

We have developed our own category theory library in Coq for the sole purpose of formalizing and
proving the comparison theorem. As already mentioned earlier and detailed in the next Section 3.2, in
order to formalize categorical objects that take part in the theorem, we make use of Coq type classes.
That is similar to what has been done by Timany et al [22] and Wiegley [24] in their Coq libraries, and
by Daniel Peebles in his Agda library [18]. We managed to formally verify in Coq that the intersection
of our formalization of categorical objects and the one by Timany are equivalent. As Timany does,
we benefit from Coq’s universe polymorphism in our formalization but never explicitly mention uni-
verse levels. We rely on typical ambiguity where Coq automatically resolves universe constraints, i.e.,
“smallness/largeness” of objects in categorical terms. Since there is no typical ambiguity is allowed in
Agda, Peebles’ library handles all related universe levels explicitly.

The only difference in object formalizations between our library and the one of Wiegley is that he
makes use of setoid equivalences in stating proof obligations while we use Coq’s judgmental equality.
With the setoid approach, equivalence proofs between objects may become simpler. However, this
approach brings an overhead: always needs the proof of the fact that every function send equivalent
elements to equivalent elements. Using Coq’s judgmental equality, we skip this problem but face
another one: categorical objects are usually not judgmentally but contextually equal. To have the
judgmental equality as the contextual equality, we make use of the UIP assumption. Peebles also
makes use of the setoid approach in his above mentioned Agda library.

Unlike the libraries by Gross et al [10] and Ahrens et al [23], we are not yet benefiting from
HoTT proposals: no use of higher order inductive types nor the Univalence Axiom. Again the reason
for this is that we managed to implement the comparison theorem without being in the need of such
structures. However, the formalization can be clearly adapted to use the the Univalence Axiom instead
of the UIP axiom if needed.

In addition to the ones we have mentioned above, there are other implementations of category
theory in type theory. For instance, in Agda, Capriotti’s [4] formalization is based on HoTT. Ishii [12]
and Pouillard [20] make use of records. The agda-categories library [5] also benefits from the records,
and avoids the UIP axiom when it comes to do equational reasoning.

Categories and functors have also been specified by Byliński in Mizar [3], using set theoretic per-
missive types and record types. However the formalization is limited by the use of explicit Grothendieck
universes and it would be very hard if not impossible to extend it to the comparison theorem.

Chad Brown has specified the foundations of category theory in the Egal proof system [2] where
he gives definitions to meta and locally small categories with the use of predicates over Egal types
and sets respectively. He also defines small categories over Egal sets. His specification would possibly
allow the comparison theorem to be formalized using metacategories but it might be cumbersome due
to the heavy use of predicates.

3.2. Formalization of categorical objects

In a Coq implementation, we represent category theoretical objects such as categories, functors, natural
transformations, monads and adjunctions with data structures having single constructors and several
fields, namely classes. For instance, the Functor class is implemented as follows:

Class Functor (C D: Category): Type , mk_Functor

{ fobj : @obj C → @obj D;

fmap : ∀ {a b: @obj C} (f: arrow b a), (arrow (fobj b) (fobj a));

preserve_id : ∀ {a: @obj C}, fmap (@identity C a) = (@identity D (fobj a));

preserve_comp : ∀ {a b c: @obj C} (g : @arrow C c b) (f: @arrow C b a), fmap (g o f) = (fmap g) o (fmap f) }.

10 Burak Ekici and Cezary Kaliszyk

Remark 3.1. The Coq type “arrow C b a” is the type of maps from a to b (not from b to a) in the
category C as it makes the composition “relatively” easier.

In order to build a Functor class instance, one needs to instantiate four fields. The first two,
called fobj and fmap, describe how the instance in question would map objects and arrows from
the category C to D. The last two, namely preserve id and preserve comp, are coherence conditions
asserting the facts that the characterization provided in the first two fields should preserve the identity
and the composition.

One difficulty with such an implementation would arise when proving an equality between two
functor instances. To do so, one needs to mainly show that they map objects and arrows in the same
way. It is fine to put Coq’s Leibniz equality between fobj F and fobj G since Coq can implicitly infer
the fact that they are instances of the same type. This is however not the case for fmap F and fmap G.
Namely, Coq cannot implicitly infer the fact that they are living in the same type. Meaning, this type
coercion needs to be proven explicitly. To overcome the issue, we hide this explicit coercion behind
the heterogeneous (or John Major’s) equality, by McBride [16], at the lemma statement below:

Lemma F_split: ∀ (C D: Category) (F G: Functor C D), fobj F = fobj G → JMeq (fmap F) (fmap G) → F = G.

This complicates the equality proofs since one needs to show fmap F and fmap G are instances of the
same type each time before proving that they map arrows in the same way. In doing so, we usually
prefer converting the goal into the shape where we need to prove an equality over dependent pairs:

...

______________________________________(1/1)

{p : (∀ a b : obj, arrow b a → arrow (fobj F b) (fobj F a)) =

(∀ a b : obj, arrow b a → arrow (fobj G b) (fobj G a)) &

match p in (_ = y) return y with

| eq_refl ⇒ @fmap _ _ F

end = @fmap _ _ G}

If such a proof of the fact that “fmap F and fmap G are instances of the same type” is given as p,
then it is still necessary to show that p is indeed the eq refl. Only then we can try proving that
fmap F equalizes to fmap G. The proof of p = eq refl usually requires to make UIP (uniqueness of
identity proofs) assumption depending on the structures that F and G are relating. This is in fact a
similar sort of complication that would be brought by the use of setoid equivalences (as in [24]) when
replaced by the Leibniz equality. Also note that to prove the equalities between coherence conditions,
preserve id and preserve comp, we assume proof irrelevance.

A natural transformation instance defined form the functor F to G has a component (aka trans-
formation) of type arrow (G a) (F a) in the category D for each object a in C. We name this trans
in the implementation. The instance also satisfies the coherence condition which is named comm diag.
This intuitively says that using the compatible components, trans a and trans b, of the natural
transformation, one can deform the arrow fmap F f into fmap G f.

Class NaturalTransformation (C D: Category)

(F G: Functor C D): Type , mk_nt

{ trans : ∀ (a: @obj C), (@arrow D (fobj G a) (fobj F a));

comm_diag: ∀ {a b: @obj C} (f: arrow b a), fmap G f o trans a = trans b o fmap F f }.

We now have the required basics to formalize the notion of adjunctions as formally stated in Defini-
tion 2.1:

Class Adjunction {C D: Category} (F: Functor C D)

(G: Functor D C): Type , mk_Adj

{ unit : NaturalTransformation (@IdFunctor catC) (Compose_Functors F G);

counit: NaturalTransformation (Compose_Functors G F) (@IdFunctor D);

ob1 : ∀ a, (trans counit (fobj F a)) o fmap F (trans unit a) = @identity D (fobj F a);

ob2 : ∀ a, (fmap G (trans counit a)) o trans unit (fobj G a) = @identity C (fobj G a) }.

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 11

where unit and counit correspond to natural transformations η and ε and proof obligations ob1 and
ob2 implement Equations (2.1) and (2.2) respectively. This means that to build an adjunction between
given functors, one needs to provide two natural transformations satisfying the proof obligations. We
also implement monads as a Coq type class in parallel with the formalism given in Definition 2.3:

Class Monad (C: Category) (T: Functor C C): Type , mk_Monad

{ eta : NaturalTransformation IdFunctor T;

mu : NaturalTransformation (Compose_Functors T T) T;

comm_diagram1 : ∀ (a: @obj C), trans mu a o fmap T (trans mu a) = trans mu a o trans mu (fobj T a);

comm_diagram2 : ∀ (a: @obj C), trans mu a o fmap T (trans eta a) = trans mu a o trans eta (fobj T a);

comm_diagram2_b1: ∀ (a: @obj C), trans mu a o fmap T (trans eta a) = identity (fobj T a);

comm_diagram2_b2: ∀ (a: @obj C), trans mu a o trans eta (fobj T a) = identity (fobj T a) }.

In the above script, eta and mu are concerned with the two natural transformations stated in (2.6).
The first field comm diagram1 is the proof obligation requiring the associativity of the monad multi-
plication mu as in Equation (2.7). The remaining obligations comm diagram2, comm diagram2 b1 and
comm diagram2 b2 are also consulting the neutrality of the monad identity eta with respect to the
multiplication as in Equations (2.7), (2.8) and (2.9). Basically, to construct a monad instance, one
needs to provide an identity and an associative multiplication as natural transformations, satisfying
these four obligations. Also, IdFunctor is the identity functor over the base category C in the above
script.

We have so far briefly discussed the categorical objects that appear in the formal statement
Theorem 2.7 in a Coq implementation. In the next Section 3.3, we comment on how to build a proof
instance to the statement in Coq, in a similar manner to its paper proof.

3.3. A Coq Proof of the Comparison Theorem

In order to state and prove the comparison theorem in Coq, we need to (1) demonstrate that every
adjunction gives a monad on the base category that is actually the statement of Proposition 2.4, (2)
show that every monad determines a Kleisli category and a Kleisli adjunction in association as in
Proposition 2.5, (3) characterize some map L : CT → D as{

LX = FX

Lf [= εFY ◦ Ff, for each f [: X → Y in CT

and show that it is indeed a functor, (4) prove that the functor L meets equations L ◦ FT = F and
G ◦ L = GT , (5) and finally show that L is unique. Notice that first two steps are used to state the
theorem in Coq and the remaining three are indeed the proof steps.

Remark 3.2. The natural transformation ε used above in item three is the counit of the comonad that
the coKleisli adjunction determines over CT .

Remark 3.3. In the following proof scripts, we only present a brief taste of the proofs as the charac-
terizations of the objects being built, and skip the parts showing that the coherence conditions are
satisfied. For the complete proofs, please look at the library.

Let us start with the formalization of Proposition 2.4:

Theorem adj_mon: ∀ {C1 C2: Category} (F: Functor C1 C2) (G: Functor C2 C1),

let T , (Compose_Functors F G) in let T2 , (Compose_Functors T T) in Adjunction F G → Monad C1 T.

Proof. intros C1 C2 F G T T2 A.

unshelve econstructor; destruct A as (eta, eps, cc1, cc2).

- exact eta.

- refine (@mk_nt C1 C1 T2 T (fun a ⇒ fmap G (trans eps (fobj F a))) _). ... Qed.

Theorem adj_comon: ∀ {C1 C2: Category} (F: Functor C1 C2) (G: Functor C2 C1),

let D , (Compose_Functors G F) in let D2 , (Compose_Functors D D) in Adjunction F G → coMonad C2 D.

Proof. intros C1 C2 F G D D2 A.

unshelve econstructor; destruct A as (eta, eps, cc1, cc2).

- exact eps.

- refine (@mk_nt C2 C2 D D2 (fun a ⇒ fmap F (trans eta (fobj G a))) _). ... Qed.

12 Burak Ekici and Cezary Kaliszyk

Remark 3.4. The unshelve econstructor tactic breaks up the under-construction (type class) in-
stance so that it could be constructed field by field as opposed to be done in one go.

As explicitly given above, the endo-functor T of the monad that the adjunction A builds on the base
category C1 is G ◦ F. Its unit is the unit (eta) of the adjunction while the multiplication is defined
in terms of the counit eps, and implemented benefiting the refine tactic: the constructor mk nt is
“refined” to build the corresponding NaturalTransformation instance with the underlying map being
G(eps (F)) for each object a in C1. Dually, the endo-functor D of the comonad that the adjunction A

builds on the co-domain category C2 is F ◦ G, its counit is the counit (eps) of the adjunction, and the
co-multiplication is defined in terms of the unit eta as F(eta (G a)) for each object a in C2.

We implement Proposition 2.5 in three steps starting with the fact that every monad gives raise
to a Kleisli category whose objects are the ones of the base category C and morphisms are of the form
f[: b→ a for each f : b→ Ta in C.

Definition Kleisli_Category (C: Category) (T: Functor C C) (M: Monad C T): Category.

Proof. unshelve econstructor.

- exact (@obj C).

- intros a b. exact (@arrow C (fobj T a) b). ... Defined.

Once we obtain this category, we can claim that there is a special adjunction, namely the Kleisli
adjunction between the base category C and the Kleisli category. We implement the candidate adjoint
functors as in Equations (2.10) and (2.11).

Definition FT {C D: Category} (T: Functor C C) (M: Monad C T) (KC , (Kleisli_Category C T M)): Functor C KC.

Proof. destruct M as (eta, mu, cc1, cc2, cc3, cc4).

unshelve econstructor.

- exact id.

- intros a b f. exact (trans eta b o f). ... Defined.

Definition GT {C D: Category} (T: Functor C C) (M: Monad C T) (KC , (Kleisli_Category C T M)): Functor KC C.

Proof. destruct M as (eta, mu, cc1, cc2, cc3, cc4).

unshelve econstructor; simpl.

- exact (fobj T).

- intros a b g. exact (trans mu b o fmap T g). ... Defined.

Left candidate adjoint map, named FT in the implementation, is the identity on objects and maps
each arrow f : a→ b in C to an arrow (eta b ◦ f)[in the Kleisli category. The right candidate, called
GT, maps each object a in the Kleisli category to an object Ta in C. For each g[: a→ b in the Kleisli
category we have an arrow (mu b ◦ Tg) in C via GT. In the rest of the definitions, we basically show
that both maps are indeed functors.
We then prove that these candidate functors do actually form an adjunction:

Theorem mon_kladj: ∀ {C D: Category} (F: Functor C D) (G: Functor D C)

(T , Compose_Functors F G) (M: Monad C T) (FT , FT T M) (GT , GT T M), Adjunction FT GT.

Proof. intros C D F G T M FT GT.

unshelve econstructor.

- unshelve econstructor.

+ intro a. destruct M as (eta, mu, cc1, cc2, cc3, cc4).

exact (trans eta a).

...

- unshelve econstructor.

+ intro a. exact (identity (fobj G (fobj F a))). ... Qed.

To close the goal above, it suffices to build two natural transformations with signatures IdC ⇒ GT ◦ FT
and FT ◦ GT ⇒ IdD, and then show that they satisfy the coherence conditions ob1 and ob2 given as fields
(proof obligations) of the Adjunction class. The component of the former natural transformation is
simply the unit, eta a for each a in C, of the monad that we have started with. It is the map from
fobj G (fobj F a) to a for each object a in the Kleisli category for the latter natural transformation.
Notice that this map corresponds to the identity map over the object fobj G (fobj F a) in the category

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 13

C. We now characterize some map L, which will then be the comparison functor, and show that with
such a characterization L qualifies as a functor:

Definition L: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A: Adjunction F G),

let M , (adj_mon F G A) in let CM , (adj_comon F G A) in

let CK , (Kleisli_Category C (Compose_Functors F G) M) in

let FT , (FT (Compose_Functors F G) M) in let GT , (GT (Compose_Functors F G) M) in Functor CK D.

Proof. intros C D F G A M CM CK FT GT.

unshelve econstructor.

- exact (fobj F).

- intros a b f.

destruct CM as (eps, delta, cc1, cc2, cc3, cc4).

exact (trans eps (fobj F b) o fmap F f). ... Defined.

The functor L maps objects in the same way with the functor F, namely fobj L = fobj F. For each
f[: a→ b in the Kleisli category, Lf[= eps (F b) ◦ Ff in the category D. This eps here is the counit of
the comonad that the Kleisli adjunction determines over the Kleisli category.

We then show that the functor L makes the diagram in the theorem statement commutative by
satisfying the equations FT o L = F and L o G = GT:

Lemma commL: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A: Adjunction F G),

let M , (@adj_mon C D F G A) in let CK , (Kleisli_Category C (Compose_Functors F G) M) in

let FT , (FT (Compose_Functors F G) M) in let GT , (GT (Compose_Functors F G) M) in

Compose_Functors FT (L F G A) = F ∧ Compose_Functors (L F G A) G = GT.

Proof. intros C D F G A1 M CK FT GT; split.

- apply F_split.

+ easy.

+ apply eq_dep_id_JMeq, EqdepFacts.eq_sigT_iff_eq_dep, eq_existT_uncurried. ... Qed.

We need to prove functor equalities at both sides of the goal conjunction. Since both sides follow
similar proofs, it suffices to show the proof of the left component. We start with an application of the
lemma F split which generates two sub-goals:

1. fobj (Compose Functors FT (L F G A)) = fobj F. This goal is trivial since by definition L

behaves as F on objects and FT as the identity.
2. JMeq (fmap (Compose Functors FT (L F G A))) (fmap F). This one is more involved. We

turn the goal into the shape of an equality over dependent pairs after applying a sequence of
standard library lemmas (given in the above script) and a cbn reduction:

...

______________________________________(1/1)

{p: (∀ a b : obj, arrow b a → arrow (fobj F b) (fobj F a)) = (∀ a b : obj, arrow b a →
arrow (fobj F b) (fobj F a)) &

match p in (_ = y) return y with

| eq_refl ⇒ fun (a b : obj) (f : arrow b a) ⇒ trans counit (fobj F b) o fmap F (trans unit b o f)

end = @fmap _ _ F}

Obviously, such a p exists as eq refl. The rest of the proof follows from the coherence conditions
provided by the adjunction A under the functional extensionality assumption.

It now remains to implement the fact that the functor L is unique in order to get the whole proof
formalized in Coq. For that, we start with implementing a helper statement as in Lemma 2.6:

Lemma adj_unique_map: ∀ (C D: Category) (F: Functor C D) (G: Functor D C) (A: Adjunction F G),

(∀ (a: @obj C) (b: @obj D) (f: @arrow C (fobj G b) a) (g h: @arrow D b (fobj F a)),

f = fmap G g o (trans (@unit C D F G A) a) → f = fmap G h o (trans (@unit C D F G A) a) → g = h).

Proof. intros C D F G A a b f g h Hg Hh.

destruct A as (eta, eps, cc1, cc2).

rewrite Hg in Hh. apply (f_equal (fmap F)), (f_equal (fun w ⇒ comp((trans eps) _) w)) in Hh. ... Qed.

14 Burak Ekici and Cezary Kaliszyk

In the above proof script, we first build the equation trans eps b o fmap F (fmap G g o eta a) =

trans eps b o fmap F (fmap G g o eta a) by subsequent applications of f equal to the equation
fmap G g o (trans eta a) = fmap G h o (trans eta a) named Hh. Then, using the naturality of
eta and one of the coherence conditions of the adjunction A we close the goal.
It finally comes to summarize how the unicity proof is formalized in Coq:

Lemma uniqueL: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),

let M , (adj_mon F G A1) in let CK , (Kleisli_Category C (Compose_Functors F G) M) in

let FT , (FT (Compose_Functors F G) M) in let GT , (GT (Compose_Functors F G) M) in

let A2 , (mon_kladj F G M) in

∀ R : Functor CK D, Compose_Functors FT R = F ∧ Compose_Functors R G = GT → (L F G A1) = R.

Proof. intros C D F G A1 M CK FT GT A2 R.

...

apply F_split.

- ...

- ... apply (adj_unique_map _ _ _ _ A1) with (f , f). ... Qed.

It is indeed an equality proof between functors L and R which proceeds with an application of F split.
This gives us two sub-goals to discharge: (1) they map objects and (2) morphisms in the same way.
The former trivially follows from the definition of L and the assumption FT o R = F. In the proof of
the latter, we follow similar steps with the one of commL in such a way that we need to successfully
tackle the heterogeneous equality as the second enumeration above. We use the UIP axiom since L

and R map arrow in the same way only contextually not judgmentally. We end up with a goal of
the following shape: trans counit (fobj F b) o fmap F f = fmap a b f, for all f : a→ GFb in C

(natively f[: a→ b in CK). We then apply the helper lemma adj unique map and get two goals: f
= fmap G (trans counit (fobj F b) o fmap F f) o trans unit a and f = fmap G (fmap a b

f) o trans unit a. The proofs of both goals follow from the coherence conditions of the adjunction
A1. Finally, we state the comparison theorem and prove it in Coq:

Theorem ComparisonMacLane: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),

let M , (adj_mon F G A1) in let CK , (Kleisli_Category C (Compose_Functors F G) M) in

let FT , (FT (Compose_Functors F G) M) in let GT , (GT (Compose_Functors F G) M) in

let A2 , (mon_kladj F G M) in ∃ !L, (Compose_Functors FT L) = F ∧ (Compose_Functors L G) = GT.

Proof. intros C D F G A1 M CT FT GT A2. ∃ (L F G A1). split. - apply commL. - apply uniqueL. Qed.

The goal simply gets discharged by providing an existence of such a comparison functor followed the
application of the fact that the functor makes the proof diagram commutative in both directions, and
finally showing the fact that it is unique.

4. Conclusion

The categorical setting in which a comonad determining a coKleisli adjunction with a monad over
a Kleisli adjunction is used as an interpretation environment to formalize the state effect by Duval.
See Figure 2. The state-effect-triangles, as in Figure 1, by Jacobs also provide a categorical setting to
interpret the state effect. Mac Lane’s comparison theorem plays an important role in both approaches.
In the former, the provided unique comparison functor annihilates the “dual” adjunctions and serves a
better understanding of modifier terms. While in the latter, the comparison functor directly interprets
a map that maps programs to some predicates that describe their actions during the computations.
For example, it may be seen as the weakest precondition functor which maps programs to their weakest
preconditions given any post-condition.

We have formalized in Coq the comparison theorem for the Kleisli construction together with
the use case given in Example 3. We also showed that the foundations we use are equivalent to the
foundations of Timany. Our formalization currently suffices to analyze Duval’s approach but only the
one half of the approach by Jacobs. To build on this, we plan to continue with formalizing a proof
of comparison theorem for the monad algebras in Coq. This is a variant of the comparison theorem

Mac Lane’s Comparison Theorem for the Kleisli Construction Formalized in Coq 15

for the Kleisli construction in such a way that the Kleisli category CT of the monad T is replaced
with the Eilenberg-Moore category C T of algebras of T . This will then give a complete picture of the
state-effect triangles by Jacobs in a Coq formalization. Beck’s monadicity theorem [15, Ch. VI, §7,
Theorem 1] constitutes a next possible challenging formalization goal.

References

[1] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. J. Log. Algebr. Meth.
Program., 84(1):108–123, 2015.

[2] Chad E. Brown. The Egal manual. 2014.

[3] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.

[4] Paolo Capriotti. pcapriotti/agda-categories. https://github.com/pcapriotti/agda-categories/, 2014.

[5] Jaques Carette, Jason Hu, Sandro Stucki, and Octavian Mircea Sebe. agda/agda-categories. https://
github.com/agda/agda-categories, 2019.

[6] César Domı́nguez and Dominique Duval. Diagrammatic logic applied to a parameterisation process. Math-
ematical. Structures in Comp. Sci., 20(4):639–654, August 2010.

[7] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, and Jean-Claude Reynaud. Decorated proofs
for computational effects: States. In Ulrike Golas and Thomas Soboll, editors, Proceedings Seventh ACCAT
Workshop on Applied and Computational Category Theory, Tallinn, Estonia, 1 April 2012., volume 93 of
EPTCS, pages 45–59, 2012.

[8] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, and Jean-Claude Reynaud. A duality between
exceptions and states. Mathematical Structures in Computer Science, 22(4):719–722, 2012.

[9] Burak Ekici. Towards Mac Lane’s Comparison Theorem for the (co)Kleisli construction in Coq. In Pro-
ceedings of the 3rd FMM 2018, co-located with the 11th CICM, 2018.

[10] Jason Gross, Adam Chlipala, and David I. Spivak. Experience implementing a performant category-
theory library in Coq. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th
International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8558 of LNCS, pages 275–291. Springer, 2014.

[11] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[12] Hiromi Ishii. konn/category-agda. https://github.com/konn/category-agda, 2013.

[13] Bart Jacobs. A recipe for state-and-effect triangles. Logical Methods in Computer Science, 13(2), 2017.

[14] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88, pages 47–57, New
York, NY, USA, 1988. ACM.

[15] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathe-
matics. Springer-Verlag, 1971.

[16] Conor McBride. Elimination with a motive. In TYPES, volume 2277 of Lecture Notes in Computer Science,
pages 197–216. Springer, 2000.

[17] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July 1991.

[18] Daniel Peebles. copumpkin/categories. https://github.com/copumpkin/categories, 2018.

[19] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in Computer Science,
9(4), 2013.

[20] Nicolas Pouillard. crypto-agda/crypto-agda. https://github.com/crypto-agda/crypto-agda/tree/

master/FunUniverse, 2015.

[21] Amin Timany. amintimany/categories. https://github.com/amintimany/Categories, 2017.

[22] Amin Timany and Bart Jacobs. Category theory in Coq 8.5. In Proceedings of the 1st FSCD, Porto,
Portugal, pages 30:1–30:18, June 2016.

[23] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked library of
univalent mathematics. available at https://github.com/UniMath/UniMath, 2018.

[24] John Wiegley. jwiegley/category-theory. https://github.com/jwiegley/category-theory, 2018.

16 Burak Ekici and Cezary Kaliszyk

Appendix A. Organization of the Coq Sources

In the accompanying library you will find 9 Coq source files. The following 8 files are indeed relevant
for the proof of the comparison theorem and its use case (Example 3): Imports, Category, Functor,
NaturalTransformation, Monad, Adjunction, Comparison and UseCase. They are given in an order
such that subsequent one always depends on the previous ones. I.e., UseCase depends on all files.

The remaining file, namely equivalence, includes the equivalence proofs of the overlapping parts
of our library with the one of Timany [21].

We have named in the implementation the lemma/theorem and definition statements as they
appear in the paper. Below we provide information about which statement is located in which file:

• Functor.v: Functor (class), F split (lem).
• NaturalTransformation.v: NaturalTransformation (cls).
• Monad.v: Monad (class), Kleisli Category (def), FT (def), GT (def).
•Adjunction.v: Adjunction (class), adj mon (thm), adj comon (thm), mon kladj (thm),adj unique map
(lem).
• Comparison.v: L (def), commL (lem), uniqueL (lem), ComparisonMacLane (thm).
• UseCase.v: Example 3 as AnniliationOfDualAdjunctions (thm).

The sources have been tested to compile fine with coqc versions 8.7.2, 8.8.0, 8.8.1 and 8.8.2

within approximately 7 seconds on an Intel Core i7-7600U machine with 20GB external memory, and
running Ubuntu 18.04 LTS.

Burak Ekici
Department of Computer Science
University of Innsbruck
Innsbruck, Austria
e-mail: burak.ekici@uibk.ac.at

Cezary Kaliszyk
Department of Computer Science
University of Innsbruck
Innsbruck, Austria
e-mail: cezary.kaliszyk@uibk.ac.at

