
Relaxed Weighted Path Order in Theorem Proving

Jan Jakubův and Cezary Kaliszyk

Mathematics Subject Classification (2010). Primary 68T15; Secondary 68Q42, 68Q60, 06F99.

Keywords. Automated Theorem Proving, First-order Logic, Term Orderings, Term Rewriting, Su-
perposition Calculus, Weighted Path Order.

Abstract. We propose an extension of the automated theorem prover E by the weighted path order-
ing (WPO). Weighted path ordering is theoretically stronger than all the orderings used in E Prover,
however its parametrization is more involved than those normally used in automated reasoning. In
particular, it depends on a term algebra. We integrate the ordering in E Prover and perform an eval-
uation on the standard theorem proving benchmarks. The ordering is complementary to the ones
used in E prover so far.

Furthermore, first-time presented here, we propose a relaxed variant of the weighted path
order as an approximation of the standard WPO definition. A theorem prover strategy with a relaxed
order can be incomplete, which is, however, not an issue as completeness can be easily regained
by switching to a complete strategy. We show that the relaxed weighted path order can have a huge
impact on an improvement of a theorem prover strategy.

1. Introduction
In the last two decades the superposition calculus has become one of the main foundations of auto-
mated theorem provers for first-order logic. Indeed the systems regularly winning the yearly CADE
ATP Systems Competition, such as E Prover [9] and Vampire [4] are based on the superposition cal-
culus. Also for the problems not previously solved by humans, superposition calculus based Prover9
has been most useful so far [7].

The use of powerful and efficient orderings is one of the major advantages of the superposi-
tion calculus for classical first-order theorem proving. Orderings allow provers to avoid redundant
clauses, namely clauses which only differ in the order of literals, as well as permit orienting equa-
tions and therefore rewriting the clauses only in one direction. The three predominantly used order-
ings in automated theorem proving are LPO, KBO, and RPO. In fact, for the former two optimized
implementations are known [6, 5].

However, term rewriting research has shown that there exist more powerful orderings, for ex-
ample the weighted path order (WPO) [12] is one of the strongest known orderings. With carefully
selected parameters is can subsume most known orderings including LPO, KBO, and RPO [13].
There are however two reasons, why such stronger orderings have not been tried for automated
reasoning so far. First, they often rely on complicated parameters. For example WPO relies on an

This work was kindly supported by the ERC Consolidator grant no. 649043 AI4REASON, by ERC Starting grant no. 714034
SMART, and by Cost Action CA15123 EUTypes.

2 Jan Jakubův and Cezary Kaliszyk

algebra on terms as an argument. Second, the efficiency of KBO, LPO, or even RPO has been op-
timized for the most common cases, whereas the more advanced orderings have been stated in a
general manner, without optimizing their efficiency.

This paper extends our previous research [2] where we attempt to overcome both of these
obstacles and propose an efficient way to implement WPO as part of an automated reasoning sys-
tem. We also propose parameters that allow WPO to function efficiently within a state-of-the-art
automated theorem prover and help with actual theorem proving problems. After discussing the pre-
liminaries on term orderings in Section 2 and on their use in the superposition calculus in Section 3,
the particular contributions of this paper are:
• We propose algebras that can be used efficiently for first-order theorem proving (Section 4).
• First-time presented in this paper, we propose a relaxed version of WPO based on approxima-

tion of the standard WPO definition (Section 5).
• We evaluate WPO against existing orderings in E Prover on parts of the TPTP library, the

proofs stemming from the AIM conjecture [10], and on the CoqHammer proofs [1] in Sec-
tion 6.
• We show that relaxed WPO can provide a huge benefit for a theorem proving strategy (Sec-

tion 6.2).
• Additionally to our previous research, we provide an evaluation of effectiveness of our imple-

mentation based on real CPU time limits.
This work is an extended version of our ICMS 2018 paper [2]. In comparison with that work,

the relaxed WPO, efficient implementation, and a more extensive evaluation including an evaluation
based on CPU time limit are the main new contributions presented first-time in this paper.

2. Term Orderings and Rewriting
We work in first-order logic (FOL). A signature Σ is a collection of symbols with arities. The set
of first-order variables is denoted V , and TΣ stands for the terms over signature Σ and variables
V . A literal is an atomic formula or its negation, and a clause is a disjunction of literals. In ATPs,
clauses are used to describe both the input problem, and the knowledge inferred during the search.
On occasion, unit equality clauses of the form s = t are inferred. Such equalities can be used to
simplify other clauses using s→ t or t→ s as a rewriting rule.

Rewriting systems, described by finite sets of rewriting rules, are often used inside ATPs to keep
a set of clauses in normal forms. A crucial property for ATPs is the termination of every rewriting
chain on any term. The termination of system R can be shown using a well-founded term ordering
>T on terms T , that orients every rule (s → t) ∈ R, meaning s >T t. Terminating rewriting
systems are called reduction orders. See [8, 13] for details.

Reduction orders are successfully used in many state-of-the-art ATPs. Common orders [8, 13]
are lexicographic path order (LPO) and Knuth-Bendix order (KBO). LPO extends a precedence >Σ

on symbols to a reduction order on TΣ by a variety of subterm comparisons. KBO is generated by
a precedence and symbol weights. Terms in KBO are first compared by weights and the subterm
comparisons are necessary only if the weights differ. WPO further abstracts the idea of symbol
weight comparisons to comparisons in algebras.

In this section, we remind the theoretical definitions of the orderings LPO and KBO used in E
Prover, and remind the theoretical definition of WPO. We mostly follow [8] for LPO and KBO and
[13] for WPO, and we refer the reader there for further details.

All the orderings will be defined on first-order terms TΣ, and rely on a precedence >Σ, which
needs to be a proper order on the symbols from signature Σ.

Definition 2.1 (LPO [8]). Given a precedence on symbols >Σ, we define the lexicographic path
order (LPO) >lpo as follows: s = f(s1, . . . , sn) >lpo t iff one of the following conditions holds:

Relaxed Weighted Path Order in Theorem Proving 3

1. t = f(t1, . . . , tn) and ∃i ∈ {1, . . . , n} such that
(i) sj = tj for all j such that 1 6 j < i,

(ii) si >lpo ti, and
(iii) s >lpo tj for all j such that i < j 6 n,

2. t = g(t1, . . . , tm), f >Σ g, and s >lpo ti for all i such that 1 6 i 6 m, or
3. si ≥lpo t for all i such that 1 6 i 6 n.

Where ≥lpo is the reflexive closure of >lpo.

In order to define KBO, we additionally need a weight function induced by a pair (w,w0)
where w is symbol weight function and w0 is a constant variable weight. The constant w0 must be
greater than zero, and the mapping w from the signature Σ to the natural numbers is defined such
that w(c) > w0 for any constant c ∈ Σ. The weight function w on symbols from Σ is naturally
extended to the weight function on terms TΣ as follows.

w(x) = w0 for x ∈ V w(f(s1, . . . , sn)) = w(f) + w(s1) + · · ·+ w(sn)

Additionally if a unary function f has weight 0, than f is the greatest element wrt. the precedence.
In the following, |s|x denotes the number of occurrences of variable x ∈ V in term s ∈ TΣ.

Definition 2.2 (KBO [8]). Given a precedence >Σ and the weight function induced by (w,w0), we
define the Knuth-Bendix order (KBO) >kbo on TΣ as follows: s >kbo t iff |s|x > |t|x for all x ∈ V
and one of the following conditions holds:

1. w(s) > w(t), or
2. w(s) = w(t) and one of the following conditions holds:

(i) t ∈ V and s = fn(t) for an unary function symbol f and n > 0,
(ii) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and ∃i ∈ {1, . . . , n} such that sj = tj for all

1 6 j < i and si >kbo ti, or
(iii) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g.

Weighted path order (WPO) further abstracts the weight function to the notion of algebras on
first-order terms defined as follows.

Definition 2.3. An algebra A over Σ consists of a well-ordered carrier set and of an interpretation
fA : Nn → N for every n-ary function symbol f from Σ. An algebraA is weakly monotone iff a ≥ b
implies f(. . . , a, . . .) ≥ f(. . . , b, . . .), and weakly simple iff f(. . . , a, . . .) ≥ a for every f ∈ Σ.

In this work, we consider the carrier set always to be N with the standard order on N. Given a
variable assignment σ : V → N, we can structurally interpret every term t ∈ TΣ using interpretations
from algebra A as the number σA(t) ∈ N, formally as follows.

σA(x) = σ(x) σA(f(s1, . . . , sn)) = fA(σA(s1), . . . , σA(sn)))

Thus the algebra A induces the following ordering >A on terms: s >A t iff σA(s) > σA(t)
for every variable assignment σ. Similarly, we write s ≥A t iff σA(s) ≥ σA(t) for every σ. The
following defines WPO induced by A.

Definition 2.4 (WPO [13]). Given a precedence >Σ and an algebra A over Σ, the weighted path
order >wpo on TΣ is defined as follows: s = f(s1, . . . , sn) >wpo t iff (1) s >A t, or (2) s ≥A t and
one of the following holds:

2a. ∃i ∈ {1, . . . , n}. si ≥wpo t, or
2b. t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s >wpo tj and either

(i) f >Σ g, or
(ii) f = g and (s1, . . . , sn) >lex

wpo (t1, . . . , tn).

4 Jan Jakubův and Cezary Kaliszyk

Only terms comparable inA are comparable in>wpo. Strict order s >A t alone implies s >wpo
t. Otherwise s ≥A must hold and various subterm conditions are checked. In (2a), ≥wpo is the
reflexive closure of >wpo, while >A and ≥A are separately defined orders induced by A. In (2b/ii)
the lexicographical extension >lex

wpo of >wpo to n-tuples is used when the compared terms have the
same head symbol.

If the WPO algebra A is weakly monotone and weakly simple, then >wpo is a reduction or-
der [13, Theorem 13]. With different algebras, WPO is known to behave like LPO [13, Theorem 19],
or like KBO [13, Theorem 16], or to subsume both [13, Theorem 20]. Instantiations of WPO with
different algebras are discussed in Section 4.

3. Orderings in Superposition Calculus
Saturation based automated theorem provers, like E Prover [9], attempt to prove a first-order goal
conjectureG in a theory T , that is, T ` G. First, theory axioms with the negated conjecture T∪{¬G}
are translated to a logically equivalent set of clauses. Then, a saturation process is initiated, which
selects an unprocessed clause C and computes all possible inferences of C with all the previously
processed clauses. Clause C is then marked as processed and another unprocessed clause is selected.
This process continues until an empty clause (contradiction) is derived, or there are no more unpro-
cessed clauses (the set of processed clauses becomes saturated), or the prover runs out of resources.

The saturation process uses term orderings for various purposes depending on the selected
inference rules. The classical resolution rule allows to infer the clause (C1 ∨ C2)σ from clauses
(L1∨C1) and (¬L2∨C2) providedL1 andL2 are unifiable with the unifier σ. The ordered resolution
restricts the classical resolution rule to literals maximal in each clause (w.r.t. a fixed term ordering
>T). In paramodulation, inferred unit equality clauses of the form s = t, which can be oriented
using the ordering (either s >T t or t >T s), can be used as rewriting rules (s → t or t → s,
respectively). The processed clauses are then kept in their normal form with respect to the inferred
rewriting rules (called demodulators). All these extensions restrict the number of possible inferences
preserving completeness (that is, they do not prevent the inference of the empty clause). Clearly,
the more terms are comparable, the more inferences are restricted, which leads to a more effective
search space reduction.

E Prover implements LPO and KBO. The desired term ordering can be selected using a
command-line option. E implements approximately ten signature-independent methods to generate
the precedence on the symbols. In this work, we shall consider the following.

(arity/iarity). Symbols are sorted by arity or reverse arity. Symbols with higher arity are larger/smaller.
(freq/ifreq). Symbols are sorted by the frequency of their occurrence in the input problem. Fre-

quently occurring symbols are larger/smaller. In the case of the same frequency, symbols are
sorted by arity.

(ufirst). Same as arity but unary symbols are smaller. In the case of the same arity, symbols are
sorted by frequency.

(ufreq). Same as ifreq but unary symbols are always smaller.

KBO is additionally parametrized by a weight function (w,w0). E implements several ways of
generating weights for a given problem. We shall consider the following. All of these set the variable
weight w0 to 1 and only differ in w.

(const). The weights of all the symbols are set to the constant 1.
(arity/iarity). The weight of an n-ary function symbol is set to n+ 1 (respectively to m−n+ 1,

where m is the largest symbol arity).
(prec/iprec). Given a symbol precedence <, the weight of symbol f is the number of symbols

smaller/larger than f increased by 1.

Relaxed Weighted Path Order in Theorem Proving 5

(fcount/ifcount). The weight of symbol f is the number of occurrences of f in the input prob-
lem (respectively m minus the number of occurrences, where m is the frequency of the most
occurring symbol).

(frank/ifrank). Sort all function symbols by frequency of occurrence (which induces a total
quasi-ordering). The weight of a symbol is the rank of it’s equivalence class, with less fre-
quent symbols getting lower/higher weights.

Additionally, E allows user-defined weights for all constant symbols, which override the weight
assigned by the above weight generation schemes. Finally, E allows both a specific user-defined
precedence and specific symbol weights. We do not, however, consider these specific settings as they
depends on a signature. Our implementation of WPO in E Prover is described in the next Section 4.

4. Implementation of WPO in E Prover
This section describes our implementation of WPO in E Prover. We introduce two specific algebras
from the literature [13]. Both algebras are weakly monotone and simple, and hence instantiate WPO
to a reduction order. We discuss the implementation of algebra comparisons and provide several
coefficient generation schemes for WPO. We conclude by a brief description of our main WPO
comparison method. First we introduce Sum-algebras which sum the arguments with a positive
multiplier.

Definition 4.1 (Sum-algebra). A Sum-algebra A over Σ induced by (w, c) is an algebra over Σ
where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = w(f) +

n∑
i=1

c(f, i) ∗ ai

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th argument of f (called
subterm coefficient).

Both the weights and subterm coefficients can be zero under certain additional conditions [13,
Theorems 5 & 13]. All E weight generation schemes used in this work produce non-zero weights, and
hence we consider only positive coefficients, mainly to simplify the implementation. Experimenting
with non-zero values is left as future work. The carrier set of A can be instantiated by a subset of N
({n ∈ N : n ≥ w0} for some w0 ∈ N). Note, that a restriction of such a Sum-algebra to w0 > 0
and c(f, i) = 1 is equivalent to KBO [13, Theorem 16].

Given a Sum-algebra A over Σ, every term s ∈ TΣ can be interpreted in A as an expression
of the grammar “E ::= N | V | (E + E) | (N ∗ E)”. This expression contains variables vars(s) =
{x1, . . . , xn}. The expression can transformed to the equivalent expression sA of the following form,
which we say interprets s in A (for appropriate ci ∈ N).

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · ·+ cn ∗ xn

Since the definitions of >A and ≥A involve an infinite number of variable assignments, it is
necessary to provide an efficient algorithm to check the algebra comparisons in WPO. The following
lemma helps us to achieve that. Note that, we take the liberty of reordering variables so that shared
variables come first.

Lemma 4.1. Given Sum-algebraA over Σ and terms s, t ∈ TΣ, let vars(t) ⊆ vars(s) = {x1, . . . , xn}
and let vars(t) = {x1, . . . , xm} for some m ≤ n. Let

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · ·+ cn ∗ xn
tA(x1, . . . , xm) = d0 + d1 ∗ x1 + · · ·+ dm ∗ xm

6 Jan Jakubův and Cezary Kaliszyk

be the interpretations of s and t in A. Then the following holds.

s >A t iff ∀i ∈ {1, . . . ,m}. ci ≥ di and c0 > d0

s ≥A t iff ∀i ∈ {0, . . . ,m}. ci ≥ di

Clearly, s >A t (and also s ≥A t) implies vars(t) ⊆ vars(s), hence the variable requirement
is not a limitation. WPO requires algebras to be weakly monotone to generate a reduction order.
Similarly, the notion of strictly monotone algebras can be defined (using strict comparisons instead
of weak ones). Sum-algebras are strictly (and hence weakly) monotone. We next define theMax -
algebras, which use max instead of addition, making them weakly monotone.

Definition 4.2 (Max -algebra). AMax -algebra A over Σ induced by (w, c) is an algebra over Σ
where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = max
(
w(f) ,

n
max
i=1

(c(f, i) + ai)
)

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th argument of f (called
subterm penalty).

Again, zero weights and penalties are allowed under certain conditions, which we omit in
this presentation. For example, setting all the weights and penalty coefficients to zeros makes WPO
behave like LPO [13, Theorem 19]. Similarly to Sum-algebras, given a Max -algebra A over Σ,
every term s ∈ TΣ with vars(s) = {x1, . . . , xn} can be interpreted by an expression sA of the
following form, which is said to interpret s in A.

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)

The following allows efficiently comparing terms inMax -algebras.

Lemma 4.2. LetMax -algebra A over Σ and terms s, t ∈ TΣ be given. Let vars(t) ⊆ vars(s) =
{x1, . . . , xn} and vars(t) = {x1, . . . , xm} for some m ≤ n. Let

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)
tA(x1, . . . , xm) = max(d0, x1 + d1, . . . , xm + dm)

interpret s and t in A. Let cmax = max(c0, . . . , cn) and dmax = max(d0, . . . , dm). Then the
following holds.

s >A t iff cmax > dmax and ∀i ∈ {1, . . . ,m}. ci > di
s ≥A t iff cmax ≥ dmax and ∀i ∈ {1, . . . ,m}. ci ≥ di

Note that in s >A t, as opposed to Lemma 4.1, we require all the coefficients to be strictly
greater. Otherwise max(x+ 2, y + 1) would be strictly greater than max(x+ 1, y + 1). We do not
compare the constant coefficients c0 and d0, because, for example, max(1, x+ 3) is always greater
than max(2, x + 2) even though the constant coefficients are not. The proof of Lemma 4.2 follows
from the observation that c0 can be substituted by cmax without affecting the value of sA.

Inspired by precedence/weight generation schemes in E, we have implemented the following
subterm coefficient generation schemes. These schemes generate coefficients c(f, i) to be used both
in Sum andMax -algebras.

(constant). All coefficients are set to 1.
(arity). For an n-ary function symbol f we set c(f, i) = n.
(firstmax). For all f , the first coefficient c(f, 1) is set 2 while the others to 1.
(firstmin). For all f , the first coefficient c(f, 1) is set 1 while the others to 2.
(asc/desc). Set up ascending/descending coefficients. For an n-ary function symbol f we set
c(f, i) = i (respectively c(f, i) = n− i+ 1).

Relaxed Weighted Path Order in Theorem Proving 7

To implement a new term ordering>T in E, a term comparison method is required. The method
takes two terms s and t as input and returns whether s <T t, or s >T t, or s = t, or the terms are
incomparable. We have implemented the WPO comparison methods for Sum andMax algebras.
Our implementation mostly follows Definition 2.4. At first we check strict algebra comparisons >A.
To do that, we compute coefficients ci and di from Lemma 4.1 or 4.2 by a traversal of s and t. If the
coefficients are the same, we clearly have both s ≥A t and t ≥A s. If s >A t, we return s >wpo t
(and vice versa). For terms incomparable with >A, we proceed with the weak comparison ≥A. If
they are weakly comparable, we proceed with the subterm checks.

5. Term Rewriting with Relaxed Algebras
Algebras Sum andMax from Section 4 have nice theoretical properties, in particular, they instanti-
ate WPO to a reduction order. In this section we try to address the question, whether forsaking some
of these theoretical properties might give us an advancement in a practical use of a theorem prover.
We shall introduce several relaxed algebras which might instantiate WPO to a non-terminating or-
der, or even to a relation which is not an order at all. To avoid infinite loops when rewriting terms, we
impose an upper bound on the length of every rewriting chain. Proof strategies with this modification
of rewriting might not be complete, however, correctness is preserved. It is a known fact in theorem
proving, that incomplete strategies can still be useful in practice. Moreover, any proof search can be
made complete by switching to a complete strategy once incomplete strategies fail to find a proof.

All of our relaxed algebras, just like the standard complete algebras from Section 4, are induced
by (w, c) where w is a symbol weight function and c is a coefficient function. We define four relaxed
RSum-algebras and four relaxedRMax -algebras. Each of these algebras assign a numeric weight
to a term. In the case of theRSum-algebras, we denote the weight of term t byRSum(t), and all of
the four algebras use the following recursive formula to compute the weight of a non-variable term.

RSum
(
f(s1, . . . , sn)

)
= w(f) +

n∑
i=1

c(f, i) ∗ RSum(si)

The four relaxedRSum-algebras differ only in the value they assign to variables. AlgebraRSum0

simply assigns 0 to every variable, while in algebra RSum1 we set RSum1(x) = 1 for every
variable x. The remaining two algebras suppose that variables in a term are numbered (starting
from 1) by their first occurrence in the term from left to right. Algebra RSum+ assigns to each
variable its number, while algebraRSum− assigns the opposite number. For example, given a term
f(g(x, y), x), we have RSum+(x) = 1 and RSum+(y) = 2, while RSum−(x) = −1 and
RSum−(y) = −2.

Similarly, we define four relaxed RMax -algebras. Again, each of them assigns a weight to
each term t, denotedRMax (t). The following common formula is used to compute the weight of a
non-variable term.

RMax
(
f(s1, . . . , sn)

)
= max

(
w(f) ,

n
max
i=1

(c(f, i) +RMax (si))
)

The algebras differ in the value they assign to variables, and this gives us four RMax algebras:
RMax 0,RMax 1,RMax+, andRMax−. The variable weights are the same as in the case of the
fourRSum algebras.

Our relaxed algebras can easily used with WPO from Definition 2.4. The terms are at first
compared by their weights, and only in the case of equal weights, subterms conditions (2a) and
(2b) are checked. As opposed to the standard complete algebras, every two terms are comparable
in our relaxed algebras. Hence more terms are strictly comparable in our relaxed algebras, thus,
the computationally expensive subterms checks should be executed less often. Hence our relaxed
algebras can be expected to perform more effectively.

8 Jan Jakubův and Cezary Kaliszyk

Auto LPO KBO WPO union
solved solved by solved by solved by solved by

TPTP/LAT 27 28 2 30 2 34 5 36 5
TPTP/REL 49 68 3 59 2 75 2 77 3
AIM 35 44 2 38 2 54 4 54 4
COQ 22 26 3 27 2 27 2 27 2

TABLE 1. Total number of problems solved by all LPO, KBO, and WPO instances
with a fixed limit of 1000 processed clauses per problem.

The relaxed algebras can be seen as an approximation of the complete algebras in the fol-
lowing way. With the complete algebras, terms are represented by expressions with variables, and
the expressions are compared with respect to every possible variable assignment (see Section 2). In
the relaxed algebras, we just evaluate the expressions with a single fixed variable assignment, for
example, σ0 = {x 7→ 0 : x ∈ V} in the case ofRSum0 orRMax 0.

6. Experimental Evaluations
This section provides an evaluation of our experimental implementation of WPO in E Prover.1 We
use a single good-performing E strategy with the different term orders. The strategy was randomly
selected and is provided in Appendix A. Section 6.1 describes previously published [2] evaluation of
standard WPO. Section 6.2 provides evaluation of WPO with relaxed algebras, first published here.

We evaluate our experimental implementation on four complementary benchmarks with around
200 problems each. Benchmark problems are from two TPTP [11] categories (LAT and REL), from
the Abelian Inner Mappings project (AIM) [10], and from CoqHammer [1]. As we evaluate a large
number of different ordering instances on all of the benchmark problems, it is important to limit the
number of problems, so that the evaluation can be done in a reasonable time.2 We, however, believe
that our collection of about 800 benchmark problems is reasonably orthogonal to allow us to perform
an objective evaluation. All the selected benchmark domains rely heavily on equational reasoning,
and hence can be expected to benefit from improvements in term rewriting.

6.1. Evaluation of Standard WPO Implementation
We evaluate all instances of LPO, KBO, and WPO induced by the generation schemes described
above, in order to estimate the value of WPO for E. Altogether we have 1410 instances to be eval-
uated on all the benchmark problems. The limit of 1000 processed clauses, instead of time limit, is
used for an evaluation independent on implementation effectiveness. Section 6.2, however, contains
evaluation conducted with a fixed CPU time limit per instance and problem.

We have 6 instances of LPO, 108 instances KBO, and 1296 of WPO. The results for each
benchmark are in Table 1. For each ordering, the column “by” shows the least number of instances
necessary to solve the number in the column solved. Number of problems solved by E’s automated
term order selection is shown in column “Auto”. The “union” columns show a combined perfor-
mance. Table 2 shows the best-performing instance for every order type, measuring number prob-
lems solved and the number of problems solved additionally to Auto mode (column “E+”). The
parameters of the instances select the generation schemes for precedence, weights, algebra, and co-
efficients.

1https://github.com/ai4reason/eprover/tree/WPO
2The evaluations took around 4 days employing 128 cores of Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz with 128 GB
memory in total.

https://github.com/ai4reason/eprover/tree/WPO

Relaxed Weighted Path Order in Theorem Proving 9

TPTP/REL solved E+
WPO(freq,prec,Sum ,desc) 63 14
LPO(arity) 59 12
KBO(iarity,iarity) 57 8
E (Auto) 49 0

TPTP/LAT solved E+
KBO(iarity,iprec) 29 3
WPO(arity,iprec,Sum ,const) 28 1
LPO(arity) 27 0
E (Auto) 27 0
WPO(ifreq,prec,Max ,desc) 24 3

AIM solved E+
WPO(freq,fcount,Sum ,desc) 41 5
LPO(arity) 41 4
KBO(freq,ifrank,c1) 37 1
E (Auto) 35 0

COQ solved E+
WPO(arity,fcount,Sum ,desc) 26 4
KBO(arity,fcount) 25 3
LPO(ufreq) 24 4
E (Auto) 22 0

TABLE 2. Best instances of LPO, KBO, and WPO for each benchmark with a
fixed limit of 1000 processed clauses per problem.

WPO helped to solve more problems for each benchmark. It also solved problems unsolved
by Auto. Furthermore, the strongest WPO is usually equal or better than the strongest version of
LPO and KBO. LPO(arity) is often the best of LPOs. As for WPO, Sum often performs better than
Max overall butMax can solve unique problems. The algebra coefficients generated by desc often
perform best.

As stated above, we used a limit on processed clauses rather than on runtime, in order to ab-
stract from implementation details. In order to assess the effectiveness of our implementation, we
have additionally evaluated the best performing ordering instances from Table 2 on the benchmark
problems with runtime limit of 5 seconds. For each benchmark category (AIM, COQ, etc.) we have
computed the average runtime on the problems solved by all the instances. The results vary on dif-
ferent categories but LPO is usually the fastest and KBO is in average from 10% The speed of WPO
varies, but in average it is from 40% LPO. However, for example on TPTP/REL, our implementa-
tion of WPO is in average faster than both LPO and KPO. We conclude that our implementation
can be definitely made more effective, but even in the current state, it can provide a valuable gain.
Section 6.2 provides additional evaluation with fixed CPU time limit instead of an abstract time
limit.

6.2. Evaluation of WPO with Relaxed Algebras
This section provides experimental evaluation of WPO with both standard and relaxed algebras. We
evaluate all LPO, KBO, and WPO instances with fixed CPU time limit of 1 second per problem. In
this way we shall be able to estimate whether there are some WPO instances which enrich standard E
Prover implementation. As before, we have 6 LPO instances, 108 KBO instances, and 1296 standard
WPO instances. Additionally, we introduce 5184 instances of relaxed WPO, generated by 8 relaxed
algebras from Section 5. Altogether we have 6594 instances to be evaluated on all of the benchmark
problems. Hence a relatively small time limit of 1 second per instance and problem was chosen in
order to make this evaluation possible. This is, however, not a limitation as a reasonable correlation
between results obtained with higher time limits can be expected.

The results for each benchmark are in Table 3. The table is as in the previous section, that
is, the column “solved” shows the total number of problems solved by all the instances of LPO,
KBO, WPO, and by WPO instances with relaxed algebras (denoted “R-WPO”). Again, the column
“by” shows the least number (more precisely, the size of a greedy coverage) of instances necessary to
solve the number in the column “solved”. A full listing of instances in greedy coverage are presented
in Appendix B, as these data might provide additional insight about useful ordering parameters.

10 Jan Jakubův and Cezary Kaliszyk

Auto LPO KBO WPO R-WPO union
solved solved by solved by solved by solved by solved by

TPTP/LAT 42 42 1 45 2 44 2 48 3 48 3
TPTP/REL 88 92 3 95 2 98 5 115 7 115 6
AIM 43 55 2 50 3 58 7 70 10 71 10
COQ 36 37 2 37 1 38 2 42 3 42 3

TABLE 3. Total number of problems solved by all LPO, KBO, WPO, and relaxed
WPO instances with a fixed CPU time limit of 1 second per problem.

TPTP/REL solved
WPO(ufreq,prec,RSum0,const) 95
KBO(ifreq,fcount,c1) 92
WPO(ufreq,ifcount,Sum ,const,c1) 91
LPO(arity) 73
E (Auto) 88

TPTP/LAT solved
KBO(ifreq,const) 44
WPO(freq,iprec,RSum+,const) 44
WPO(iarity,iprec,Sum ,const) 43
LPO(ufirst) 42
E (Auto) 42

AIM solved
WPO(ufreq,fcount,RSum+,desc) 52
LPO(freq) 50
KBO(ifreq,frank) 47
WPO(frirst,fcount,c1,Sum ,desc) 46
E (Auto) 43

COQ solved
WPO(arity,iarity,c1,RSum−,arity) 39
WPO(iarity,frank,Sum ,firstmin) 37
KBO(ufirst,iprec,c1) 37
LPO(ufreq) 36
E (Auto) 36

TABLE 4. Best instances of LPO, KBO, WPO, and relaxed WPO for each bench-
mark with a fixed CPU time limit of 1 second per problem.

Number of problems solved by E’s automated term order selection (-tAuto) is shown in column
“Auto” as a reference. The “union” columns show a combined performance. Additionally, Table 4
shows the best-performing instance for every ordering and benchmark, together with the number of
problems solved.

We can see that WPO with relaxed algebras outperforms other ordering types. From the com-
bined performance in the column “union” of Table 3 we can furthermore conclude that WPO with
relaxed algebras can solve all the problems as other orderings (with the exception of one AIM prob-
lem) and more. With a relatively big number of possible WPO instances, it is, however, a question
whether one can arrive at the right instantiations easily. This is further discussed in Section 7.

7. Conclusion
In this paper we proposed efficient implementations of algebras that allow integrating more powerful
orderings in the superposition calculus. The resulting E strategies are more precise, resulting in com-
plementary proofs on the various corpora and have a potential to benefit E Prover and superposition
calculus ATPs in general. Furthermore, first-time presented here, we proposed a relaxed version of
WPO and experimentally evaluate its benefits, and thus also benefits of relaxed term orderings for
ATPs in general.

We have experimentally evaluated our implementation of WPO with standard and relaxed al-
gebras on a single good-performing E Prover strategy. State-of-the-art theorem provers, however,
are not based on a single strategy, but rather on a portfolio of complementary strategies. It is often

Relaxed Weighted Path Order in Theorem Proving 11

the case, that even a large improvement of a single strategy from the portfolio has just a minimal ef-
fect on the overall portfolio performance. This is because the additionally solved problems are often
already solved by another portfolio strategy. For example, we have shown that with the selected E
strategy, there are problems solved only by WPO with relaxed algebras. Whether the same problems
can be solved with another E strategy with LPO or KBO is not clear. We have experimentally tried to
employ portfolio invention system BliStrTune [3] in order to invent two portfolios, one with and one
without our WPO orderings (both standard and relaxed). So far we have been able to reach only a 1%
Whether this behavior is caused by WPO, or by a wrong configuration or limitations of BliStrTune
is left for further research.

As another future work, we would like to experiment with orderings that work modulo asso-
ciativity and commutativity [14]. Additionally we would like to investigate other coefficient settings,
and experiment with zero weights, as this might further reduce the number of derived clauses. We
would also like to further optimize the efficiency of the algebra comparisons, as well as the compu-
tation of the ordering itself.

Appendix A. E Strategy Used For Experiments
The following is the E Prover strategy used in the experiments given as E Prover command line
options. Additional command line options are introduced by the given term ordering selection. For
example, KBO(ifreq,fcount,c1) adds “-tKBO6 -Ginvfreq -wfreqcount -c1”.

--definitional-cnf=24 --destructive-er-aggressive --destructive-er
--prefer-initial-clauses -F1 --split-clauses=0
--forward-context-sr -WSelectComplexG --oriented-simul-paramod
-H’(1*ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,
100,1.5,1.5,1),4*ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,
100,100,100,1.5,1.5,1.5),1*FIFOWeight(PreferProcessed),
1*ConjectureRelativeSymbolWeight(PreferNonGoals,0.5,100,100,100,100,
1.5,1.5,1),4*Refinedweight(SimulateSOS,3,2,2,1.5,2))’

Appendix B. Greedy Coverage
Table 5 gives a full list of order instances in greedy covers required to solve the number of problems
listed in Table 3 for each benchmark. The first numeric column states how many new problems the
corresponding instance adds to problems solved by the previous instances in the sequence (from top
to down). The second column states how many problems the corresponding instance solves by itself.
The following abbreviations are used: “fmin” stands for for “firstmin”, and “fmax” for “firstmax”.
Other values might be abbreviated to a unique prefix (like “constant” to “con”) for space restrictions.
Furthermore, Sum andMax are abbreviated to S andM.

References
1. Łukasz Czajka and Cezary Kaliszyk, Hammer for Coq: Automation for dependent type theory, J. Autom.

Reasoning 61 (2018), no. 1-4, 423–453.
2. Jan Jakubuv and Cezary Kaliszyk, Towards a unified ordering for superposition-based automated reason-

ing, ICMS, Lecture Notes in Computer Science, vol. 10931, Springer, 2018, pp. 245–254.
3. Jan Jakubuv and Josef Urban, Hierarchical invention of theorem proving strategies, AI Commun. 31 (2018),

no. 3, 237–250.
4. Laura Kovács and Andrei Voronkov, First-order theorem proving and Vampire, Computer-Aided Verifica-

tion (CAV 2013), LNCS, vol. 8044, Springer, 2013, pp. 1–35.

12 Jan Jakubův and Cezary Kaliszyk

LPO adds solves
AIM

LPO(freq) +50 50
LPO(ufirst) +5 44

COQ
LPO(ufreq) +36 36
LPO(iarity) +1 33

LAT
LPO(ufirst) +42 42

REL
LPO(arity) +73 73
LPO(ifreq) +15 56
LPO(ufirst) +4 71

KBO adds solves
AIM

KBO(ifreq,frank,0) +47 47
KBO(freq,iprec,0) +2 43
KBO(arity,arity,0) +1 46

COQ
KBO(ufirst,iprec,1) +37 37

LAT
KBO(ifreq,const,0) +44 44
KBO(freq,ifrank,0) +1 43

REL
KBO(ifreq,fcount,1) +92 92
KBO(arity,const,0) +3 74

WPO adds sol.
AIM

WPO(ufirst,fcount,c1,S ,desc) +46 46
WPO(freq,frank,c1,M,fmax) +5 43
WPO(iarity,iprec,c1,S,con) +2 42
WPO(freq,prec,S,asc) +2 43
WPO(ufirst,ifc,M,con) +1 36
WPO(freq,ifc,c1,M,con) +1 38
WPO(freq,fcount,S,fmax) +1 45

COQ
WPO(iarity,frank,S,fmin) +37 37
WPO(arity,iprec,M,asc) +1 37

LAT
WPO(iarity,iprec,S,con) +43 43
WPO(ufreq,con,M,asc) +1 36

REL
WPO(ufreq,prec,c1,S,con) +91 91
WPO(ufirst,prec,c1,M,con) +2 46
WPO(ifreq,fcount,c1,S,fmin) +2 63
WPO(ufreq,prec,c1,S,fmax) +2 88
WPO(ufreq,iarity,S,con) +1 75

R-WPO adds sol.
AIM

WPO(ufreq,fcount,S+,desc) +52 52
WPO(ufirst,ifc,c1,S0,asc) +5 46
WPO(ufreq,fcount,M1,asc) +3 50
WPO(arity,iprec,M+,desc) +2 38
WPO(arity,ifc,c1,M0,desc) +2 48
WPO(ufirst,fcount,c1,S1,ari) +2 47
WPO(arity,iprec,S1,asc) +1 38
WPO(arity,arity,S−,desc) +1 29
WPO(ufreq,ifc,c1,M+,fmin) +1 45
WPO(ufirst,fcount,S−,fmax) +1 45

COQ
WPO(arity,iarity,c1,S−,arity) +39 39
WPO(ufirst,con,c1,S−,fmin) +2 34
WPO(arity,iprec,S−,desc) +1 37

LAT
WPO(freq,iprec,S+,fmin) +44 44
WPO(iarity,ifrank,M1,con) +3 40
WPO(ufreq,prec,c1,M−,asc) +1 39

REL
WPO(ufreq,prec,S0,con) +95 95
WPO(ifreq,iprec,M0,fmax) +13 86
WPO(freq,frank,c1,S+,desc) +2 80
WPO(arity,iarity,M1,desc) +2 57
WPO(ifreq,con,c1,M0,fmax) +1 76
WPO(iarity,iarity,M0,fmax) +1 61
WPO(ufreq,iarity,M0,fmax) +1 60

TABLE 5. Full listing of order instances in greedy covers.

Relaxed Weighted Path Order in Theorem Proving 13

5. Bernd Löchner, Things to know when implementing KBO, J. Autom. Reasoning 36 (2006), no. 4, 289–310.
6. , Things to know when implementing LPO, International Journal on Artificial Intelligence Tools 15

(2006), no. 1, 53–80.
7. William McCune, Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), no. 3, 263–276.
8. Aart Middeldorp, Term rewriting lecture notes, 9th International School on Rewriting (ISR 2017), 2017.
9. Stephan Schulz, System description: E 1.8, Logic for Programming, Artificial Intelligence (LPAR 2013),

LNCS, vol. 8312, Springer, 2013, pp. 735–743.
10. Geoff Sutcliffe, The 8th IJCAR automated theorem proving system competition - CASC-J8, AI Communi-

cations 29 (2016), no. 5, 607–619.
11. , The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0, Jour-

nal of Automated Reasoning 59 (2017), no. 4, 483–502.
12. Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe, Unifying the Knuth-Bendix, recursive path and

polynomial orders, PPDP, ACM, 2013, pp. 181–192.
13. , A unified ordering for termination proving, Sci. Comput. Program. 111 (2015), 110–134.
14. Akihisa Yamada, Sarah Winkler, Nao Hirokawa, and Aart Middeldorp, AC-KBO revisited, TPLP 16 (2016),

no. 2, 163–188.

Jan Jakubův
Czech Technical University in Prague / CIIRC
Jugoslávských partyzánů 1580/3
160 00 Praha 6
Czech Republic
e-mail: jakubuv@gmail.com

Cezary Kaliszyk
University of Innsbruck
Technikerstraße 21a/2
6020 Innsbruck
Austria
e-mail: cezary.kaliszyk@uibk.ac.at

	1. Introduction
	2. Term Orderings and Rewriting
	3. Orderings in Superposition Calculus
	4. Implementation of WPO in E Prover
	5. Term Rewriting with Relaxed Algebras
	6. Experimental Evaluations
	6.1. Evaluation of Standard WPO Implementation
	6.2. Evaluation of WPO with Relaxed Algebras

	7. Conclusion
	Appendix A. E Strategy Used For Experiments
	Appendix B. Greedy Coverage
	References

