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Abstract. We describe an implementation of gradient boosting and
neural guidance of saturation-style automated theorem provers that
does not depend on consistent symbol names across problems. For
the gradient-boosting guidance, we manually create abstracted features
by considering arity-based encodings of formulas. For the neural guid-
ance, we use symbol-independent graph neural networks (GNNs) and
their embedding of the terms and clauses. The two methods are effi-
ciently implemented in the E prover and its ENIGMA learning-guided
framework.

To provide competitive real-time performance of the GNNs, we have
developed a new context-based approach to evaluation of generated
clauses in E. Clauses are evaluated jointly in larger batches and with
respect to a large number of already selected clauses (context) by the
GNN that estimates their collectively most useful subset in several
rounds of message passing. This means that approximative inference
rounds done by the GNN are efficiently interleaved with precise sym-
bolic inference rounds done inside E. The methods are evaluated on the
MPTP large-theory benchmark and shown to achieve comparable real-
time performance to state-of-the-art symbol-based methods. The meth-
ods also show high complementarity, solving a large number of hard
Mizar problems.
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1 Introduction: Symbol Independent Inference Guidance

In this work, we develop two symbol-independent (anonymous) inference guiding
methods for saturation-style automated theorem provers (ATPs) such as E [25]
and Vampire [20]. Both methods are based on learning clause classifiers from
previous proofs within the ENIGMA framework [5,13,14] implemented in E. By
symbol-independence we mean that no information about the symbol names is
used by the learned guidance. In particular, if all symbols in a particular ATP
problem are consistently renamed to new symbols, the learned guidance will
result in the same proof search and the same proof modulo the renaming.

Symbol-independent guidance is an important challenge for learning-guided
ATP, addressed already in Schulz’s early work on learning guidance in E [23].
With ATPs being increasingly used and trained on large ITP libraries [2,3,6,8,
16,18], it is more and more rewarding to develop methods that learn to reason
without relying on the particular terminology adopted in a single project. Initial
experiments in this direction using concept alignment [10] methods have already
shown performance improvements by transferring knowledge between the HOL
libraries [9]. Structural analogies (or even terminology duplications) are however
common already in a single large ITP library [17] and their automated detection
can lead to new proof ideas and a number of other interesting applications [11].

This system description first briefly introduces saturation-based ATP with
learned guidance (Sect. 2). Then we discuss symbol-independent learning and
guidance using abstract features and gradient boosting trees (Sect. 3) and graph
neural networks (Sect. 4). The implementation details are explained in Sect. 5
and the methods are evaluated on the MPTP benchmark in Sect. 6.

2 Saturation Proving Guided by Machine Learning

Saturation-Based Automated Theorem Provers (ATPs) such as E and
Vampire are used to prove goals G using a set of axioms A. They clausify the for-
mulas A∪{¬G} and try to deduce contradiction using the given clause loop [22]
as follows. The ATP maintains two sets of processed (P ) and unprocessed (U)
clauses. At each loop iteration, a given clause g from U is selected, moved to
P , and U is extended with new inferences from g and P . This process continues
until the contradiction is found, U becomes empty, or a resource limit is reached.
The search space grows quickly and selection of the right given clauses is critical.

Learning Clause Selection over a set of related problems is a general
method how to guide the proof search. Given a set of FOL problems P and
initial ATP strategy S, we can evaluate S over P obtaining training samples T .
For each successful proof search, training samples T contain the set of clauses
processed during the search. Positive clauses are those that were useful for the
proof search (they appeared in the final proof), while the remaining clauses
were useless, forming the negative examples. Given the samples T , we can train
a machine learning classifier M which predicts usefulness of clauses in future
proof searches. Some clause classifiers are described in detail in Sects. 3, 4, and 5.
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ATP Guidance By a Trained Classifier: Once a clause classifier M is
trained, we can use it inside an ATP. An ATP strategy S is a collection of
proof search parameters such as term ordering, literal selection, and also given
clause selection mechanism. In E, the given clause selection is defined by a col-
lection of clause weight functions which alternate to select the given clauses. Our
ENIGMA framework uses two methods of plugging the trained classifier M into
S. Either (1) we use M to select all given clauses (solo mode denoted S �M), or
(2) we combine predictions of M with clause selection mechanism from S so that
roughly 50% of the clauses is selected by M (cooperative mode denoted S ⊕M).
Proof search settings other than clause selection are inherited from S in both
the cases. See [5] for details. The phases of learning and ATP guidance can be
iterated in a learning/evaluation loop [29], yielding growing sets of proofs Ti and
stronger classifiers Mi trained over them. See [15] for such large experiment.

3 Clause Classification by Decision Trees

Clause Features are used by ENIGMA to represent clauses as sparse vectors
for machine learners. They are based mainly on vertical/horizontal cuts of the
clause syntax tree. We use simple feature hashing to handle theories with large
number of symbols. A clause C is represented by the vector ϕC whose i-th index
stores the value of a feature with hash index i. Values of conflicting features
(mapped to the same index) are summed. Additionally, we embed conjecture
features into the clause representation and we work with vector pairs (ϕC , ϕG)
of size 2 ∗ base, where ϕG is the feature vector of the current goal (conjecture).
This allows us to provide goal-specific predictions. See [15] for more details.

Gradient Boosting Decision Trees (GBDTs) implemented by the
XGBoost library [4] currently provide the strongest ENIGMA classifiers. Their
speed is comparable to the previously used [14] weaker linear logistic classifier,
implemented by the LIBLINEAR library [7]. In this work, we newly employ the
LightGBM [19] GBDT implementation. A decision tree is a binary tree whose
nodes contain Boolean conditions on values of different features. Given a feature
vector ϕC , the decision tree can be navigated from the root to the unique tree
leaf which contains the classification of clause C. GBDTs combine predictions
from a collection of follow-up decision trees. While inputs, outputs, and API
of XGBoost and LightGBM are compatible, each employ a different method of
tree construction. XGBoost constructs trees level-wise, while LightGBM leaf-
wise. This implies that XGBoost trees are well-balanced. On the other hand,
LightGBM can produce much deeper trees and the tree depth limit is indeed an
important learning meta-parameter which must be additionally set.

New Symbol-Independent Features: We develop a feature anonymization
method based on symbol arities. Each function symbol name s with arity n is
substituted by a special name “fn”, while a predicate symbol name q with arity
m is substituted by “pm”. Such features lose the ability to distinguish different
symbol names, and many features are merged together. Vector representations
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of two clauses with renamed symbols are clearly equal. Hence the underlying
machine learning method will provide equal predictions for such clauses. For
more detailed discussion and comparison with related work see Appendix B.

New Statistics and Problem Features: To improve the ability to distinguish
different anonymized clauses, we add the following features. Variable statistics of
clause C containing (1) the number of variables in C without repetitions, (2) the
number of variables with repetitions, (3) the number of variables with exactly
one occurrence, (4) the number of variables with more than one occurrence, (5–
10) the number of occurrences of the most/least (and second/third most/least)
occurring variable. Symbol statistics do the same for symbols instead of variables.
Recall that we embed conjecture features in clause vector pair (ϕC , ϕG). As G
embeds information about the conjecture but not about the problem axioms,
we propose to additionally embed some statistics of the problem P that C and
G come from. We use 22 problem features that E prover already computes for
each input problem to choose a suitable strategy. These are (1) number of goals,
(2) number of axioms, (3) number of unit goals, etc. See E’s manual for more
details. Hence we work with vector triples (ϕC , ϕG, ϕP ).

4 Clause Classification by Graph Neural Network

Another clause classifier newly added to ENIGMA is based on graph neural
networks (GNNs). We use the symbol-independent network architecture devel-
oped in [21] for premise selection. As [21] contains all the details, we only briefly
explain the basic ideas behind this architecture here.

Hypergraph. Given a set of clauses C we create a directed hypergraph with
three kinds of nodes that correspond to clauses, function and predicate symbols
N , and unique (sub)terms and literals U occurring in C, respectively. There are
two kinds of hyperedges that describe the relations between nodes according
to C. The first kind encodes literal occurrences in clauses by connecting the
corresponding nodes. The second hyperedge kind encodes the relations between
nodes from N and U . For example, for f(t1, . . . , tk) ∈ U we loosely speaking
connect the nodes f ∈ N and t1, . . . , tk ∈ U with the node f(t1, . . . , tk) and
similarly for literals, where their polarity is also taken into account.

Message-Passing. The hypergraph describes the relation between various kinds
of objects occurring in C. Every node in the hypergraph is initially assigned a
constant vector, called the embedding, based only on its kind (C, N , or U). These
node embeddings are updated in a fixed number of message-passing rounds,
based on the embeddings of each node’s neighbors. The underlying idea of such
neural message-passing methods1 is to make the node embeddings encode more
and more precisely the information about the connections (and thus various

1 Graph convolutions are a generalization of the sliding window convolutions used for
aggregating neighborhood information in neural networks used for image recognition.
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properties) of the nodes. For this to work, we have to learn initial embeddings
for our three kinds of nodes and the update function.2

Classification. After the message-passing phase, the final clause embeddings
are available in the corresponding clause nodes. The estimated probability of
a clause being a good given clause is then computed by a neural network that
takes the final embedding of this clause and also aggregated final embeddings of
all clauses obtained from the negated conjecture.

5 Learning and Using the Classifiers, Implementation

In order to use either GBDTs (Sect. 3) or GNNs (Sect. 4), a prediction model
must be learned. Learning starts with training samples T , that is, a set of pairs
(C+, C−) of positive and negative clauses. For each training sample T ∈ T , we
additionally know the source problem P and its conjecture G. Hence we can
consider one sample T ∈ T as a quadruple (C+, C−, P,G) for convenience.

GBDT. Given a training sample T = (C+, C−, P,G) ∈ T , each clause C ∈
C+ ∪ C− is translated to the feature vector (ϕC , ϕG, ϕP ). Vectors where C ∈ C+

are labeled as positive, and otherwise as negative. All the labeled vectors are fed
together to a GBDT trainer yielding model DT .

When predicting a generated clause, the feature vector is computed and DT
is asked for the prediction. GBDT’s binary predictions (positive/negative) are
turned into E’s clause weight (positives have weight 1 and negatives 10).

GNN. Given T = (C+, C−, P,G) ∈ T as above we construct a hypergraph for the
set of clauses C+∪C−∪G. This hypergraph is translated to a tensor representation
(vectors and matrices), marking clause nodes as positive, negative, or goal. These
tensors are fed as input to our GNN training, yielding a GNN model NT . The
training works in iterations, and NT contains one GNN per iteration epoch. Only
one GNN from a selected epoch is used for predictions during the evaluation.

In evaluation, it is more efficient to compute predictions for several clauses
at once. This also improves prediction quality as the queried data resembles
more the training hypergraphs where multiple clauses are encoded at once as
well. During an ATP run on problem P with the conjecture G, we postpone
evaluation of newly inferred clauses until we reach a certain amount of clauses
Q to query.3 To resemble the training data even more, we add a fixed number of
the given clauses processed so far. We call these context clauses (X ). To evaluate
Q, we construct the hypergraph for Q∪X ∪G, and mark clauses from G as goals.
Then model NT is asked for predictions on Q (predictions for X are dropped).
The numeric predictions computed by NT are directly used as E’s weights.

Implementation and Performance. We use GBDTs implemented by the
XGBoost [4] and LightGBM [19] libraries. For GNN we use Tensorflow [1]. All
2 We learn individual components, which correspond to different kinds of hyperedges,

from which the update function is efficiently constructed.
3 We may evaluate less than Q if E runs out of unevaluated unprocessed clauses.
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Table 1. Model training and evaluation for anonymous GBDTs (Di) and GNN (Ni).

M TPR TNR Training Real time Abstract time

[%] [%] Size Time Params S ⊕ M +% S ⊕ M +%

∅ - - - - - 14 966 0.0 10 679 0.0

D0 84.9 68.4 14M 2h29m X,d12 20 679 38.1 17 917 67.8

D1 79.0 79.5 29M 4h33m X,d12 23 280 58.2 20 760 94.4

D2 80.5 79.2 47M 40m L,d30,l1800 24 347 62.7 22 661 112.2

N0 92.1 77.1 14M 17h e20,q128,c512 20 912 39.7 19 755 84.9

N1 90.0 78.6 31M 1d19h e10,q128,c512 23 156 54.7 21 737 103.5

N2 91.3 79.6 50M 1d 8h e50,q256,c768 23 262 55.4 22 169 107.6

the libraries provide Python interfaces and C/C++ APIs. We use the Python
interfaces for training and the C APIs for the evaluation in E. The Python
interfaces for XGBoost and LightGBM include the C APIs, while for Tensor-
flow this must be manually compiled, which is further complicated by poor
documentation.

The libraries support training both on CPUs and on GPUs. We train Light-
GBM on CPUs, and XGBoost and Tensorflow on GPUs. However, we always
evaluate on a single CPU as we aim at practical usability on standard hardware.
This is non-trivial and it distinguishes this work from evaluations done with
large numbers of GPUs or TPUs and/or in prohibitively high real times. The
LightGBM training can be parallelized much better – with 60 CPUs it is much
faster than XGBoost on 4 GPUs. Neither using GPUs for LightGBM nor many
CPUs for XGBoost provided better training times. The GNN training is slower
than GBDT training and it is not easy to make Tensorflow evaluate reasonably
on a single CPU. It has to be compiled with all CPU optimizations and restricted
to a single thread, using Tensorflow’s poorly documented experimental C API.

6 Experimental Evaluation

Setup. We experimentally evaluate4 our GBDT and GNN guidance5 on a large
benchmark of 57880 Mizar40 [18] problems6 exported by MPTP [28]. Hence
this evaluation is compatible with our previous symbol-dependent work [15].
We evaluate GBDT and GNN separately. We start with a good-performing E
strategy S (see [5, Appendix A]) which solves 14 966 problems with a 10 s limit
per problem. This gives us training data T0 = eval(S) (see Sect. 5), and we start
three iterations of the learning/evaluation loop (see Sect. 2).

4 On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz
cores, 755 GB of memory, and 4 NVIDIA GeForce GTX 1080 Ti GPUs.

5 Available at https://github.com/ai4reason/eprover-data/tree/master/IJCAR-20.
6 http://grid01.ciirc.cvut.cz/∼mptp/1147/MPTP2/problems small consist.tar.gz.

https://github.com/ai4reason/eprover-data/tree/master/IJCAR-20
http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz


454 J. Jakub̊uv et al.

For GBDT, we train several models (with hash base 215) and conduct a
small learning meta-parameters grid search. For XGBoost, we try different tree
depths (d ∈ {9, 12, 16}), and for LightGBM various combinations of tree depths
and leaves count ((d, l) ∈ {10, 20, 30, 40} × {1200, 1500, 1800}). We evaluate all
these models in a cooperative mode with S on a random (but fixed) 10% of all
problems (Appendix A). The best performing model is evaluated on the whole
benchmark in both cooperative (⊕) and solo (�) runs. These give us the next
samples Ti+1. We perform three iterations and obtain models D0, D1, and D2.

For GNN, we train a model with 100 epochs, obtaining 100 different GNNs.
We evaluate GNNs from selected epochs (e ∈ {10, 20, 50, 75, 100}) and we try
different settings of query (q) and context (c) sizes (see Sect. 5). In particular,
q ranges over {64, 128, 192, 256, 512} and c over {512, 768, 1024, 1536}. All pos-
sible combinations of (e, q, c) are again evaluated in a grid search on the small
benchmark subset (Appendix A), and the best performing model is selected for
the next iteration. We run three iterations and obtain models N0, N1, and N2.

Results are presented in Table 1. For each model Di and Ni we show (1) true
positive/negative rates, (2) training data sizes, (3) train times, and (4) the best
performing parameters from the grid search. Furthermore, for each model M we
show the performance of S ⊕M in (5) real and (6) abstract time. Details follow.
(1) Model accuracies are computed on samples extracted from problems newly
solved by each model, that is, on testing data not known during the training.
Columns TPR/TNR show accuracies on positive/negative testing samples. (2)
Train sizes measure the training data in millions of clauses. (4) Letter “X” stands
for XGBoost models, while “L” for LightGBM. (5) For real time we use 10 s limit
per problem, and (6) in abstract time we limit the number of generated clauses
to 5000. We show the number of problems solved and the gain (in %) on S. The
abstract time evaluation is useful to assess the methods modulo the speed of the
implementation. The first row shows the performance of S without learning.

Evaluation. The GNN models start better, but the GBDT models catch up and
beat GNN in later iterations. The GBDT models show a significant gain even
in the 3rd iteration, while the GNN models start stagnating. The GNN models
report better testing accuracy, but their ATP performance is not as good.

For GBDTs, we see that the first two best models (D0 and D1) were produced
by XGBoost, while D2 by LightGBM. While both libraries can provide similar
results, LightGBM is significantly faster. For comparison, the training time for
XGBoost in the third iteration was 7 h, that is, LightGBM is 10 times faster. The
higher speed of LightGBM can overcome the problems with more complicated
parameter settings, as more models can be trained and evaluated.

For GNNs, we observe higher training times and better models coming from
earlier epochs. The training in the 1st and 2nd iterations was done on 1 GPU,
while in the 3rd on 4 GPUs. The good abstract time performance indicates that
further gain could be obtained by a faster implementation. But note that this is
the first time that NNs have been made comparable to GBDTs in real time.
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Fig. 1. Left: the number of problems solved in time; Right: the number of processed
clauses (the x-axis for S, and the y-axis for S ⊕ D0 and S ⊕ N0, respectively).

Figure 1 summarizes the results. On the left, we observe a slower start for
GNNs caused by the initial model loading. On the right, we see a decrease in
the number of processed clauses, which suggests that the guidance is effective.

Complementarity. The twelve (solo and cooperative) versions of the methods
compared in Fig. 1 solve together 28271 problems, with the six GBDTs solving
25255 and the six GNNs solving 26571. All twenty methods tested by us solve
29118 problems, with the top-6 greedy cover solving (in 60 s) 28067 and the top-
15 greedy cover solving (in 150 s) 29039. The GNNs show higher complementarity
– varying the epoch as well as the size of the query and context produces many
new solutions. For example, the most complementary GNN method adds to the
best GNN method 1976 solutions. The GNNs are also quite complementary to
the GBDTs. The second (GNN) strategy in the greedy cover adds 2045 solutions
to the best (GBDT) strategy. Altogether, the twenty strategies solve (in 200 s)
2109 of the Mizar40 hard problems, i.e., the problems unsolved by any method
developed previously in [18].

7 Conclusion

We have developed and evaluated symbol-independent GBDT and GNN ATP
guidance. This is the first time symbol-independent features and GNNs are
tightly integrated with E and provide good real-time results on a large cor-
pus. Both the GBDT and GNN predictors display high ability to learn from
previous proof searches even in the symbol-independent setting.

To provide competitive real-time performance of the GNNs, we have devel-
oped context-based evaluation of generated clauses in E. This introduces a new
paradigm for clause ranking and selection in saturation-style proving. The gen-
erated clauses are not ranked immediatelly and independently of other clauses.
Instead, they are judged in larger batches and with respect to a large number of
already selected clauses (context) by a neural network that estimates their collec-
tively most useful subset by several rounds of message passing. This also allows
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new ways of parameterizing the search that result in complementary methods
with many new solutions.

The new GBDTs show even better performance than their symbol-dependent
versions from our previous work [15]. This is most likely because of the parameter
grid search and new features not used before. The union of the problems solved
by the twelve ENIGMA strategies (both � and ⊕) in real time adds up to 28
247. When we add S to this portfolio we solve 28 271 problems. This shows that
the ENIGMA strategies learned quite well from S, not losing many solutions.
When we add eight more strategies developed here we solve 29 130 problems,
of which 2109 are among the hard Mizar40. This is done in general in 200 s and
without any additional help from premise selection methods. Vampire in 300 s
solves 27 842 problems. Future work includes joint evaluation of the system on
problems translated from different ITP libraries, similar to [9].

Acknowledgments. We thank Stephan Schulz and Thibault Gauthier for discussing
with us their methods for symbol-independent term and formula matching.

A Additional Data From the Experiments

This appendix presents additional data from the experiments in Section 6.
Figure 3 shows the results of the grid search for GNN models on one tenth
of all benchmark problems done in order to find the best-performing parameters
for query and context sizes. The x-axis plots the query size, the y-axis plots the
context size, while the z-axis plots the ATP performance, that is, the number
of solved problems. Recall that the grid search was performed on a randomly
selected but fixed tenth of all benchmark problems with a 10 s real-time limit per
problem. For N0 and N1, there is a separate graph for each iteration, showing
only the best epochs. For N2, there are two graphs for models from epoch 20
and 50. Note how the later epoch 50 becomes more independent on the context
size. The ranges of the grid search parameters were extended in later iterations
when the best-performing value was at the graph edge.

Figure 4 shows the grid search results for the best LightGBM’s GBDT models
from iterations 1, 2, and 3 (denoted here D0, D1, and D2). The x-axis plots the
number of tree leaves, the y-axis plots the tree depth, while the z-axis plots
the number of solved problems. There are two models from the second iteration
(D1), showing the effect of different learning rate (η). Again, the ranges of meta-
parameters were updated in between the iterations by a human engineer.

Figure 5 shows the training accuracies and training loss for the LightGBM
model D2. Accuracies (TPR and TNR) of the training data are computed from
the first iteration (T0). The values for loss (z) are inverted (1− z) so that higher
values correspond to better models which makes a visual comparison easier. We
can see a clear correlation between the accuracies and the loss, but not so clear
correlation with the ATP performance. The ATP performance of D2 is the same
as in Figure 4, repeated here for convenience.
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Fig. 2. Scatter plots for the lengths of the discovered proofs (the x-axis for S, and the
y-axis for S ⊕ D2 and S ⊕ N2, respectively).

Figure 2 compares the lengths of the discovered proofs. We can see that
there is no systematic difference in this metric between the base strategy and
the ENIGMA ones.

Finally, we have compared the feature vectors of the symbol-dependent and
symbol-independent versions of the GBDTs. On the same data, we observe
roughly 2x more collisions. The symbol-independent version has around 1% of
colliding feature vectors, while the symbol-dependent version has 0.42%.

B Discussion of Anonymization

Our use of symbol-independent arity-based features for GBDTs differs from
Schulz’s anonymous clause patterns [23,24] (CPs) used in E for proof guidance
and from Gauthier and Kaliszyk’s (GK) anonymous abstractions used for their
concept alignments between ITP libraries [10] in two ways:

1. In both CP and GK, serial (de Bruijn-style) numbering of abstracted sym-
bols of the same arity is used. I.e., the term h(g(a)) will get abstracted to
F11(F12(F01)). Our encoding is just F1(F1(F0)). It is even more lossy,
because it is the same for h(h(a)).

2. ENIGMA with gradient boosting decision trees (GBDTs) can be (approxi-
mately) thought of as implementing weighted feature-based clause classifica-
tion where the feature weights are learned. Whereas both in CP and GK,
exact matching is used after the abstraction is done.7 In CP, this is used for
hint-style guidance of E. There, for clauses, such serial numbering however
isn’t stable under literal reordering and subsumption. Partial heuristics can
be used, such as normalization based on a fixed global ordering done in both
CP and GK.

Addressing the latter issue (stability under reordering of literals and sub-
sumption) leads to the NP hardness of (hint) matching/subsumption. I.e.,
7 We thank Stephan Schulz for pointing out that although CPs used exact matching

by default, matching up to a certain depth was also implemented.
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the abstracted subsumption task can be encoded as standard first-order
subsumption for clauses where terms like F11(F12(F01)) are encoded as
apply1(X1, apply1(X2, apply0(X3))). The NP hardness of subsumption is how-
ever here more serious in practice than in standard ATP because only applica-
tions behave as non-variable symbols during the matching.

Thus, the difference between our anonymous approach and CP is practi-
cally the same as between the standard symbol-based ENIGMA guidance and
standard hint-based [30] guidance. In the former the matching (actually, clause
classification) is approximate, weighted and learned, while with hints the clause
matching/classification is crisp, logic-rooted and preprogrammed, sometimes
running into the NP hardness issues. Our latest comparison [12] done over the
Mizar/MPTP corpus in the symbol-based setting showed better performance of
ENIGMA over using hints, most likely due to better generalization behavior of
ENIGMA based on the statistical (GBDT) learning.

Note also that the variable and symbol statistics features to some extent
alleviate the conflicts obtained with our encoding. E.g., h(g(a)) and h(h(a))
will have different symbol statistics (Section 3) features. To some extent, such
features are similar to Schulz’s feature vector and fingerprint indexing [26,27].
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