
Improving Expressivity of Graph Neural Networks
Stanisław J. Purgał

University of Innsbruck
Innsbruck, Austria

stanislaw.purgal@uibk.ac.at

Abstract—We propose a Graph Neural Network with greater
expressive power than commonly used GNNs — not constrained
to only differentiate between graphs that Weisfeiler–Lehman
test recognizes to be non-isomorphic. We use a graph atten-
tion network with expanding attention window that aggregates
information from nodes exponentially far away. We also use
partially random initial embeddings, allowing differentiation
between nodes that would otherwise look the same. This could
cause problem with a traditional dropout mechanism, therefore
we use a “head dropout”, randomly ignoring some attention
heads rather than some dimensions of the embedding.

Index Terms—Graph Neural Networks, Graph Attention Net-
works, Deep Learning

I. INTRODUCTION

Recently there has been a great interest in neural network
architectures capable of processing graphs [1]–[5]. They are
applied for tasks of molecule properties prediction [6], premise
selection in theorem proving [7], RNA sequence classification
[8] etc.

Most Graph Neural Networks (GNNs) can recognize graphs
only up to Weisfeiler–Lehman isomorphism test (WL-test) [9],
[10], meaning that if the test says the graphs are isomorphic,
the networks will process the graphs as if they were exactly
the same — even if they are not.

In our work we seek to overcome two types of failure of
the WL-test. First is when the difference between graphs is
only noticeable when considering long connections (eg. as in
fig. 1). Another failure that we correct for is when we need to
notice whether two indirect connections lead to one and the
same node or to two similar nodes (as in fig. 2).

The first failure is addressed in our proposed model by
aggregating nodes with an exponentially expanding window.
This way we allow the network to notice a connection of
exponential length. This operation could be seen as an at-
tempt to imitate operations done in usual convolutions, such
as pooling done in computer vision, which also aggregates
information from exponentially far away, although in a more
structured way. Another operation we can be said to imitate
is an expanding dilated convolution used in WaveNet [11],
which again aggregates information from far away. Both those
approaches use intrinsic structure of the data to aggregate more
information layer by layer rather than trying to process larger
and larger sets. Unfortunately, in general, there is no such
structure in graphs.

The second problem of the WL-test is solved by introducing
a random identifier for every node present in the graph. This
preserves invariance under node permutation while allowing

b

a

(a) Two paths graph without a connection from a to b

a b

(b) Two paths graph with a connection from a to b

Fig. 1: Graphs consisting of two paths

Fig. 2: ”Diamond” graphs that common GNNs cannot differ-
entiate

the network to differentiate between nodes even if they all
look the same — thus allowing graph attention to be used
even when no labels are present.

II. PRELIMINARIES

We assume the reader to be familiar with self-attention
mechanism [12] and its use in graph attention networks [13].

Graphs considered in this work are directed, with labelled
nodes and edges. We allow all labels in a graph to be equal.
Where we consider symmetric graphs, we model it with
directed graphs where for every edge there exists a symmetric
edge in the other direction. We do not consider multi-edges,
though technically our model allows for edges with multiple
labels.

When presenting formulas for calculations done in our
model we mark parts with learnable parameters with subscript
φ. We use || to mark concatenation and � to mark point-wise
multiplication (or Hadamard product).

III. PROPOSED MODEL

Our proposed model modifies standard graph attention [13]
in three ways:
• random initial node embeddings — to facilitate atten-

tion mechanism recognizing different nodes, we add (by
concatenation) a random vector to initial embedding of

every node, with different random values every time the
embeddings are evaluated.

• expanding attention window — we use multi-headed
attention [12], with separate heads for different edge
categories. Some of attention heads only see neighbours
(as is standard), but some see exponentially expanding
neighbourhoods (nodes in distance 2, 4 and so on).

A. Partially random initial node embeddings

In our model (expGNN), initial embedding of a node is
composed of two concatenated components of same length.
One is a learnable embedding of a node label, the other a
random node identifier, a random vector composed of 1s and
0s (each possible with probability 1

2).

n0
iφ = EMBEDφ(LABEL(ni)) ||

RANDOMSEQUENCE({0 :
1

2
, 1 :

1

2
}))

This identifier is different every time an embedding is being
calculated, but stays the same withing one graph instance. This
means that it is possible to differentiate between nodes, even
if their label and neighbourhoods are the same.

B. Expanding attention window

To facilitate propagation of information within a graph
(faster than one edge per one layer), we propose an expanding
attention window. In each layer this window expands exponen-
tially, aggregating information from nodes further away. So,
in layer n we aggregate nodes that are within distance 2n.

C. Multiple attention filters

Since it is not clear that this expanding window would be
helpful for every task, we use different windows for different
attention heads, with some aggregating only neighbours, some
using this expanding window, and some aggregating from all
nodes in the graph. Since we want information to spread both
ways, not only in the direction of edges, we also use different
heads where edges go in opposite direction.

All attention head types used in our model are:
• Neighbouring nodes (different edge types separately)
• Reversed neighbouring nodes (all edge types together)
• Expanding window (all edge types together)
• Reversed expanding window (all edge types together)
• All nodes in the graph

When working with an adjacency matrix, expanding the
window can be done quite efficiently, by calculating a new
adjacency matrix:

An+1 = min(1, An ·An +An)

Of course, when working with more optimized graph repre-
sentations for sparse graphs, this operation is very costly, as
it makes the graph much denser.

D. Single layer architecture

For a single layer in our model we use residual connection
[14], similar to that used in Transformer [12], but also utilizing
layer normalization [15].

normalized layer

normalized layer

ReLU

ReLU

next embedding

filtered self-attention

previous embedding

+

||

nn+1
iφ = RELU(nniφ + FNNφ(nniφ||

FILTEREDMULTIHEADnφ(n
n
iφ,n

n
∗φ,n

n
∗φ)))

FNNφ(x) = NORMALIZEDLAYERφ(

RELU(NORMALIZEDLAYERφ(x)))

Multi-headed dot-product attention works as in [12], only
difference being using different masks for different heads.

ATTENTIONφ(Q,K, V,M) = αVWV
φ

α = MASKEDSOFTMAX(M,β)

β =
(QWQ

φ)(KWK
φ)T

√
dk

MASKEDSOFTMAX(M,x) =
expx�M∑
expx�M

FILTEREDMULTIHEADnφ(Q,K, V) = CONCAT(

ATTENTIONφ(Q,K, V,M1)

...
ATTENTIONφ(Q,K, V,Mh))

Normalized layer is defined in [15] as:

NORMALIZEDLAYERφ(x) =
gφ
σ
� (a− µ) + bφ

a = xAφ

µ =
1

H

H∑
i=1

ai

σ =

√√√√ 1

H

H∑
i=1

(ai − µ)2

E. Final aggregation for graph classification

The node embeddings resulting from a few layers described
above (in our experiments 3) are aggregated from all nodes
in the graph using simple maximum. The resulting graph
embedding is fed to a two-layer feed-forward network.

F. Head dropout

The standard dropout [16] mechanism may conflict with the
random initial embeddings. The network is supposed to rely
on random distribution of vector representations of the nodes
in the graph. Using dropout changes this distribution, making
it different during training and during evaluation. This could
(and a few times did during the experiments) lead to a situation
where loss goes down while the accuracy remains poor.

To counteract this problem, and to force learning of dif-
ferent useful properties, we use a ”head dropout”. Instead of
removing some parts of vectors, we randomly ignore certain
attention heads. During training, each type of attention window
(immediate neighbours, expanding, reversed etc.) is ignored
with some probability (in our experiments 0.1).

IV. EXPERIMENTS

We test ability of our model to recognize properties that
theoretically require overcoming the limitation of WL-test.
To do that, we generate artificial datasets, with graph labels
determined by the tested property. To better validate general-
izing ability, we use more than one evaluation set, with a few
different methods of generating random graphs (but using the
same property for labels).

For training datasets we use uniform random graphs, where
every edge exists with the same probability. This probability
is chosen to be such that about half of the generated graphs
have the property being tested.

Size of training datasets is 106 (one million), and sizes
of random testing datasets are all 104 (ten thousand). The
synthetic datasets used are available online1 in a format
compatible with [17].

A. Presence of a cycle in a symmetric graph

We generate symmetric graphs with 32 nodes, and classify
them by checking whether there is a cycle in the graph.

Evaluation sets include:
• more random graphs from the same distribution as the

training set

1http://cl-informatik.uibk.ac.at/cek/ijcnn2020/

Fig. 3: Circulant skip links — Gskip(8, 2) and Gskip(8, 3)

• uniform random graphs with 64 nodes (with lower edge-
existence probability) and with 16 nodes (with higher
edge-existence probability)

• random trees
• random trees with one additional edge (creating a cycle)
• line graphs of length between 3 and 64
• cycles of length between 3 and 64

Random trees are generated by adding nodes one by one,
attaching each one to a random already existing node. Half of
such generated trees also receive one additional edge between
a random pair of not connected nodes.

B. Presence of a clique 4

For training, again, we use random uniform graphs with 16
nodes. Evaluation sets include also bigger (and sparser) graphs
than those used in training.

In each set the class on a graph depends on presence of a
clique 4 (a subset of 4 nodes where is each node is connected
to every other node).

C. Categorizing circulant skip links

We test our network on the dataset the most difficult dataset
used in [18], [19]. This dataset has 10 categories, with only
1 graph each. Each graph is a Gskip(41, R) with R being
one of {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. A graph Gskip(N,R)
contains N nodes {1, ..., N}, such that a pair of nodes (a, b)
is connected if (and only if) |a − b| ≡ 1 or R (mod N) (see
fig. 3 for an example).

In their tests [18], [19] use 15 randomly permuted instances
of each graph (for a total of 150 graphs in the dataset). Since
our network is invariant under permutations, that would be
pointless here, and we only use 10 graphs. For evaluation
however, since our model is non-deterministic, we do use 150
graphs to get a better evaluation of our accuracy.

Since no generalizing beyond the training set in necessary
in this test, we do not use dropout here.

D. Presence of a path from one highlighted node to the other

As earlier, training set consists of uniformly random graphs,
now with two nodes being given special labels (a and b). The
class of a graph depends on the existence of a path from a to
b. In the training set all graphs have 32 nodes.

As a special testing case we use graphs consisting of two
paths. The highlighted nodes can be either on the ends on
one path, or on two different paths (shown is figure 1). Those
graphs are very similar, and hard for commonly used GNNs
to differentiate between. We use paths of length from 2 to 32.

http://cl-informatik.uibk.ac.at/cek/ijcnn2020/

TABLE I: Presence of a clique 4 results

model accuracy
training size 16 size 32 size 64

GFN 0.8076 0.8142 0.5068 0.5092
GCN 0.9005 0.9088 0.5118 0.4887

GraphStar 0.9983 0.9772 0.5331 0.5092
expGNN 0.9129 0.9108 0.7349 0.5662

expanding window only 0.5016 0.4924 0.4955 0.4908
random init only 0.9293 0.9279 0.7401 0.5427

basic graph attention 0.5016 0.4924 0.4955 0.4908

TABLE II: Presence of a cycle results

accuracy
training uniform 32 uniform 64 uniform 16 trees 64 trees 32 lines + cycles

GFN 0.9947 0.9961 0.9099 0.8737 0.7659 0.8141 0.0887
GCN 0.9995 0.9996 0.8914 0.8768 0.5649 0.8755 0.2419

GraphStar 0.9983 0.9729 0.9994 1.0000 0.8167 0.9005 0.1452
expGNN 0.9990 0.9993 0.9819 0.9999 0.8227 0.9499 0.5726

expanding window only 0.5294 0.5275 0.4424 0.5106 0.4951 0.4982 0.5000
random init only 0.9823 0.9836 0.9230 0.9972 0.7950 0.9226 0.6129

basic graph attention 0.5294 0.5275 0.4424 0.5106 0.4951 0.4982 0.5000

TABLE III: Circulant skip links results

model accuracy
mean std max min

RP-GIN [18] 0.376 0.129 0.533 0.100
16-CLIP [19] 0.908 0.068 0.987 0.760

Ring-GNN [20] N/A 0.157 0.800 0.100
expGNN 0.978 0.015 0.993 0.947

expanding window only 0.100 0.000 0.100 0.100
random init only 0.687 0.030 0.740 0.647

basic graph attention 0.100 0.000 0.100 0.100

TABLE IV: Presence of node of degree 7 results

model accuracy
training size 16 size 32

GFN 1.0000 1.0000 1.0000
GCN 1.0000 1.0000 0.8300

GraphStar 1.0000 1.0000 1.0000
expGNN 0.9520 0.9534 0.5903

expanding window only 0.5863 0.5906 0.5385
random init only 0.9862 0.9873 0.6402

basic graph attention 0.5863 0.5906 0.5385

E. Presence of a node with 7 neighbours

In this dataset we simply generate uniform graphs and check
whether there is a node with degree 7 or greater. For training
we use graphs of size 16, for testing we use also bigger graphs
of size 32.

F. Chemical datasets

We also test our model on a few chemical datasets from
[17]. These were published on [21], collected from the Pub-
Chem website2. Each dataset belongs to a certain type of
cancer screen with the outcome active or inactive.

2https://pubchem.ncbi.nlm.nih.gov/

G. Tested models

For comparison with our model we use several recently
published graph neural architectures: Graph Feature Network
[22], Graph Convolutional Network (using implementation
from the same work [22]) and Graph Star Net [23].

The exception is the experiment with circulant skip list,
where those networks mathematically can’t differentiate be-
tween graphs. There we compare with results reported in other
papers that also used this dataset [18]–[20]. Since [20] does
not report mean of their results, we leave it as “N/A”.

We also test variants of our model with only one of the
two modifications, as well as without both (making it a Graph
Attention Network [13]).

H. Hyperparameters

In our model we use 3 layers of graph message passing. In
every layer each node is encoded in 128 dimensions. In dot-
product attention the queries and keys have 32 dimensions.
Each type of attention head is used thrice. During training each
type has a 0.1 chance of being ignored. For optimization we
use Adam optimizer [24] with default β1 = 0.9, β2 = 0.999,
ε = 1e-7 and learning rate 1e-3.

V. RESULTS AND DISCUSSION

A. Presence of a clique and a cycle

These two observed graph properties are on one hand sim-
ple, on the other according to [10] cannot really be expressed
by usual GNNs. Somewhat surprisingly, results in tables I and
II show that GNNs still learn to recognize them with high
accuracy given a graph of the same size as those in the training
set. However, changing the size of the graph and the density
of edges greatly lowers the accuracy, revealing that the learned
property is not actually what we wanted.

Our proposed model seems to be able to generalize the
property to graphs of different sizes much better.

https://pubchem.ncbi.nlm.nih.gov/

TABLE V: Presence of a path results

model accuracy
training size 16 size 32 size 64 paths

GFN 0.8358 0.8453 0.8276 0.6775 0.5483
GCN 0.9706 0.7057 0.9696 0.6810 0.5161

GraphStar 0.9979 1.0000 0.9975 0.9925 0.5967
expGNN 1.0000 1.0000 1.0000 1.0000 0.8371

expanding window only 1.0000 1.0000 1.0000 0.9999 0.8629
random init only 0.9903 0.9984 0.9889 0.9853 0.5645

basic graph attention 0.9881 0.9977 0.9866 0.9859 0.5806

TABLE VI: Chemical datasets results

model accuracy
SN12C MOLT-4 Yeast

GFN 0.9639 0.9374 0.8899
GCN 0.9592 0.9336 0.8871

GraphStar 0.9640 0.9394 0.8884
expGNN 0.9633 0.9335 0.8870

expanding window only 0.9656 0.9365 0.8875
random init only 0.9626 0.9347 0.8865

basic graph attention 0.9648 0.9365 0.8870

B. Categorizing circulant skip links

The results in table III show that our model achieves better
accuracy than reported in [18]–[20].

We see that categorizing long skip links is impossible in 3
layers when not using the expanding attention window. With
it however, even 3 layers are enough.

We note that [20] also reports 100% accuracy with Ring-
GNN-SVN, a variant of Ring-GNN that is given top eigenval-
ues of adjacency matrices, allowing for trivial classification.

C. Presence of a node with degree 7 and presence of a path

The last two graph properties are things that can be trivially
learned by some GNNs. For most used models, the most basic
property is the degree of a node (trivially extracted, or in GFN
[22] just given as part of the initial embedding). In our model,
learning to extract the degree a node is possible, but much
harder (and, because it depends on random initial embeddings,
remains not 100% accurate). Instead, the basic property is
detecting a connection.

D. Chemical datasets

Experiments on chemical datasets (results shown in table
VI) show that even though our model has higher theoretical
expressive power, it does not improve accuracy on chemical
benchmarks.

VI. RELATED WORK

This work seeks to improve Graph Neural Networks. The
core idea of GNNs [25] is to generate new node embeddings
by aggregating embeddings of neighbouring nodes. Initially,
a recurrent networks would process the nodes until their em-
beddings converged to some value. Currently, most networks
use some constant number of layers that aggregate nodes
(as do we). GraphSAGE [26] experiments with aggregating
embeddings using simple functions like mean and maximum.

Following spectral graph theory Kipf et al. [27] propose a
Graph Convolution operator. It can be thought of as a sum
aggregation, but with embeddings scaled by an inverse of a
square root of a node degree (1√

dn
or d−

1
2

n), both before and
after aggregation. In [22] some features are added to the initial
node embeddings.

Graph Attention Networks, a type of GNNs that we build
on, were introduced in [13]. In this network attention mech-
anism [28] is used to aggregate the embeddings. Attention
extracts information from a set of vectors (representations of
things — in our case nodes) by first estimating importance of
every element of the set and then calculating weighted average
(with weights depending on importance). The importance
calculation can be done using a smaller feedforward neural
network that given the context and the element estimates
importance of the element in the context, or (as in [12])
by calculating a dot-product of some projection of context
representation with a projection of the element.

The attention mechanism allows for aggregating information
of a set, rather than a sequence (that is, ignore ordering
of elements), which fits exactly what we need in graph
processing.

All of the above mentioned networks allow information
to travel only one edge per network layer. To allow far
information propagation a Graph Star Net was proposed [23],
where a global state (a few ”star” nodes) is updated in every
layer. This allows information to propagate globally and to
neighbours, but not anything in-between. Thus, this network
still suffers from the constraint of WL-test. Our model allows
also far-but-not-global propagation, it is however much more
computationally costly for large graphs.

A. On Graph Attention without node labels
The output of an attention mechanism with a multiset of

exactly the same elements as input will always be equal to
that one element. This is because the output of attention is
essentially a weighted average, and if all elements are the
same, the output will be the same regardless of what (and
how many) the weights are.

Because of this, in a simple graph attention network, when
all the nodes have the same embedding (eg. when no node
labels are provided), they will remain the same after however
many layers. The network can only differentiate between
having any neighbours and having none.

The GraphStar network [23] gets around this problem by
using attention across both neighbours and a few global stars.

a

b

a

b

Fig. 4: All immediate neighbourhoods of a two paths graph
(the same regardless of whether a and b are connected)

In this way, after one layer the embedding depends on the
degree of a node (effectively nodes are given labels based on
their degree).

Our proposed model uses random node identifiers, making a
situation where all nodes have the same embeddings extremely
unlikely (effectively impossible).

B. Perception limits of GNNs

Xu et al. [10] describe expressive power of message-passing
GNNs as equivalent to Weisfeiler-Lehman isomorphism test
[9]. This means that a node embedding can depend only on the
node’s subtree structure of certain depth (the depth being equal
to the number of layers). The graph classification then depends
on the multiset of subtree structures present in the graph. A
network capable of distinguishing between all multisets of
subtree structes (of certain depth) is referred to in [10] as
a maximally powerful GNN. Yet even such networks cannot
differentiate between graphs that WL-test deems isomorphic.

The work of [18] seeks to overcome this problem by
using by using using a permutation sensitive aggregator and
summing over all permutations. To make this computationally
feasible, they propose k-ary Relational Pooling.

A different approach is proposed in [19] where they use
one-hot encoded coloring of nodes added in way that allows
for differentiating between nodes.

A mechanism similar to our expanding window was de-
scribed in [29], where multiple powers of adjacency matrix
were used during aggregation (in their experiments they were
A2 and A4). Later in [20] they use a learnable mechanism
to calculate consecutive powers of adjacency matrix, that can
in particular learn to express the a property very similar to
our exponentially expanding window (what the model in [20]
can express is min(A2n , 1), a window containing all nodes
that can be reached in exactly 2n steps). In this variant, the
“adjacency matrices” don’t necessarily contain only 1s and 0s.

Our work seeks to expand the limit of WL-test in two
places: for one, by utilizing expanding attention window we
effectively increase depth of subtree structures exponentially.
Since we also use direct neighbourhood in some attention
heads we theoretically don’t lose any expressive power. An-
other way our model is more expressive is its ability to recog-
nize connection to one and the same node from a connection
to two identical nodes. We achieve this by using random initial
embeddings.

We should point out that because of use of randomness we
lose the property of isomorphic graphs always having the same
embedding — instead we have isomorphic graphs having the
same distribution of embeddings.

VII. CONCLUSION

We present a Graph Neural Network with more expressive
power than any model we have seen described. We show its
ability to differentiate between graphs that other networks
cannot. What our models seems to excel at is classifying
synthetic datasets of graphs WL-test fails to recognize as non-
isomorphic and generalization to previously unseen graph sizes
(and edge densities).

Future work includes translating this improvement to accu-
racy on chemical datasets.

ACKNOWLEDGEMENT

This research was supported by the ERC starting grant no.
714034 SMART.

REFERENCES

[1] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” in Advances in Neural Information Processing Systems, 2019,
pp. 11 960–11 970.

[2] S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu,
“Graph neural tangent kernel: Fusing graph neural networks with graph
kernels,” in Advances in Neural Information Processing Systems, 2019,
pp. 5724–5734.

[3] W. Zhao, C. Xu, Z. Cui, T. Zhang, J. Jiang, Z. Zhang, and J. Yang,
“When work matters: Transforming classical network structures to graph
cnn,” arXiv preprint arXiv:1807.02653, 2018.

[4] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,” in
Advances in Neural Information Processing Systems, 2019, pp. 9240–
9251.

[5] Q. Xuan, J. Wang, M. Zhao, J. Yuan, C. Fu, Z. Ruan, and G. Chen,
“Subgraph networks with application to structural feature space expan-
sion,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[6] C. Helma, R. King, S. Kramer, and A. Srinivasan, “The predictive
toxicology challenge 2000-2001,” Bioinformatics, vol. 17, 01 2001.

[7] M. Wang, Y. Tang, J. Wang, and J. Deng, “Premise selection for theorem
proving by deep graph embedding,” in Advances in Neural Information
Processing Systems, 2017, pp. 2786–2796.

[8] E. Rossi, F. Monti, M. Bronstein, and P. Liò, “ncrna classification with
graph convolutional networks,” arXiv preprint arXiv:1905.06515, 2019.

[9] B. Weisfeiler and A. A. Lehman, “A reduction of a graph to a
canonical form and an algebra arising during this reduction,” Nauchno-
Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[10] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[11] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[15] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[17] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann,
“Benchmark data sets for graph kernels,” 2016. [Online]. Available:
http://graphkernels.cs.tu-dortmund.de

[18] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling
for graph representations,” arXiv preprint arXiv:1903.02541, 2019.

[19] G. Dasoulas, L. D. Santos, K. Scaman, and A. Virmaux, “Color-
ing graph neural networks for node disambiguation,” arXiv preprint
arXiv:1912.06058, 2019.

[20] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between
graph isomorphism testing and function approximation with gnns,” in
Advances in Neural Information Processing Systems, 2019, pp. 15 868–
15 876.

[21] X. Yan, “Graph datasets.” [Online]. Available: https://sites.cs.ucsb.edu/
∼xyan/dataset.htm

[22] T. Chen, S. Bian, and Y. Sun, “Are powerful graph neural nets necessary?
a dissection on graph classification,” arXiv preprint arXiv:1905.04579,
2019.

[23] L. Haonan, S. H. Huang, T. Ye, and G. Xiuyan, “Graph star net
for generalized multi-task learning,” arXiv preprint arXiv:1906.12330,
2019.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[25] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[26] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[29] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with
line graph neural networks,” arXiv preprint arXiv:1705.08415, 2017.

http://graphkernels.cs.tu-dortmund.de
https://sites.cs.ucsb.edu/~xyan/dataset.htm
https://sites.cs.ucsb.edu/~xyan/dataset.htm

	Introduction
	Preliminaries
	Proposed model
	Partially random initial node embeddings
	Expanding attention window
	Multiple attention filters
	Single layer architecture
	Final aggregation for graph classification
	Head dropout

	Experiments
	Presence of a cycle in a symmetric graph
	Presence of a clique 4
	Categorizing circulant skip links
	Presence of a path from one highlighted node to the other
	Presence of a node with 7 neighbours
	Chemical datasets
	Tested models
	Hyperparameters

	Results and discussion
	Presence of a clique and a cycle
	Categorizing circulant skip links
	Presence of a node with degree 7 and presence of a path
	Chemical datasets

	Related work
	On Graph Attention without node labels
	Perception limits of GNNs

	Conclusion
	References

