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Abstract. We present a comparison of several online machine learning
techniques for tactical learning and proving in the Coq proof assistant.
This work builds on top of Tactician, a plugin for Coq that learns from
proofs written by the user to synthesize new proofs. Learning happens in
an online manner, meaning that Tactician’s machine learning model is
updated immediately every time the user performs a step in an interactive
proof. This has important advantages compared to the more studied offline
learning systems: (1) it provides the user with a seamless, interactive
experience with Tactician and, (2) it takes advantage of locality of proof
similarity, which means that proofs similar to the current proof are
likely to be found close by. We implement two online methods, namely
approximate k-nearest neighbors based on locality sensitive hashing forests
and random decision forests. Additionally, we conduct experiments with
gradient boosted trees in an offline setting using XGBoost. We compare
the relative performance of Tactician using these three learning methods
on Coq’s standard library.

Keywords: Interactive Theorem Proving · Coq · Machine Learning ·
Online Learning · Gradient Boosted Trees · Random Forest

1 Introduction

The users of interactive theorem proving systems are in dire need of a digital
sidekick, which helps them reduce the time spent proving the mundane parts
of their theories, cutting down on the man-hours needed to turn an informal
theory into a formal one. The obvious way of creating such a digital assistant is
using machine learning. However, creating a practically usable assistant comes
with some requirements that are not necessarily conducive to the most trendy
machine learning techniques, such as deep learning.
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and Sports within the dedicated program ERC CZ under the project POSTMAN
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The environment provided by ITPs is highly dynamic, as it maintains an
ever-changing global context of definitions, lemmas, and custom tactics. Hence,
proving lemmas within such environments requires intimate knowledge of all the
defined objects within the global context. This is contrasted by—for example—
the game of chess; even though the search space is enormous, the pieces always
move according to the same rules, and no new kinds of pieces can be added.
Additionally, the interactive nature of ITPs demands that machine learning
techniques do not need absurd amounts of time and resources to train (unless
a pre-trained model is highly generic and widely applicable across domains;
something that has not been achieved yet). In this paper, we are interested in
online learning techniques that quickly learn from user input and immediately
utilize this information. We do this in the context of the Coq proof assistant [26]
and specifically Tactician [5]—a plugin for Coq that is designed to learn from
the proofs written by a user and apply that knowledge to prove new lemmas.

Tactician performs a number of functions, such as proof recording, tactic
prediction, proof search, and proof reconstruction. In this paper, we focus on
tactic prediction. For this, we need a machine learning technique that accepts as
input a database of proofs, represented as pairs containing a proof state and the
tactic that was used to advance the proof. From this database, a machine learning
model is built. The machine learning task is to predict an appropriate tactic
when given a proof state. Because the model needs to operate in an interactive
environment, we pose four requirements the learning technique needs to satisfy:

1. The model (datastructure) needs to support dynamic updates. That is, the
addition of a new pair of a proof state and tactic to the current model needs
to be done in (near) constant time.

2. The model should limit its memory usage to fit in a consumer laptop. We
have used the arbitrary limit of 4 GB.

3. The model should support querying in (near) constant time.
4. The model should be persistent (in the functional programming sense [11]).

This enables the model to be synchronized with the interactive Coq document,
in which the user can navigate back and forth.

1.1 Contributions

In this work, we have implemented two online learning models. An improved
version of the locality sensitive hashing scheme for k-nearest neighbors is described
in detail in Section 3.1. An implementation of random forest is described in
Section 3.2. In Section 4, we evaluate both models, comparing the number of
lemmas of Coq’s standard library they can prove in a chronological setting (i.e.,
emulating the growing library).

In addition to the online models, as a proof of concept, we also experiment
in an offline fashion with boosted trees, specifically XGBoost [8] in Section 3.3.
Even though the model learned by XGBoost cannot be used directly in the online
setting described above, boosted trees are today among the strongest learning
methods. Online algorithms for boosted trees do exist [27], and we intend to
implement them in the future.
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The techniques described here require representing proof states as feature
vectors. Tactician already supported proof state representation using simple
hand-rolled features [4]. In addition, Section 2 describes our addition of more
advanced features of the proof states, which are shown to improve Tactician’s
performance in Section 4.

2 Tactic and Proof State Representation

To build a learning model, we need to characterize proof states and the tactics
applied to them. To represent tactics, we first perform basic decompositions and
simplifications and denote the resulting atomic tactics by their hashes [4].

Tactician’s original proof state features [4] consist merely of identifiers and
adjacent identifier pairs in the abstract syntax tree (AST). Various other, more
advanced features have been considered for automated reasoning systems built
over large formal mathematical knowledge bases [9,14,20]. To enhance the per-
formance of Tactician, we modify the old feature set and define new features as
follows.

Top-down Oriented AST Walks We add top-down oriented walks in the
AST of length up to 3 with syntax placeholders. For instance, the unit clause
f(g(x)) will contain the features:

f:AppFun , g:AppFun , x:AppArg , f:AppFun(g:AppFun),

g:AppFun(x:AppArg), f:AppFun(g:AppFun(x:AppArg ))

The feature g:AppFun indicates that g is able to act as a function in the term
tree, and x:AppArg means that x is only an argument of a function.

Vertical Abstracted Walks We add vertical walks in the term tree from the
root to atoms in which nonatomic nodes are substituted by their syntax roles. For
the term f1(f2(f3(a))), we can convert each function symbol to AppFun whereas
the atom a is transformed to a:AppArg as above. Subsequently, we can export this
as the feature AppFun(AppFun(AppFun(a:AppArg))). Such abstracted features
are designed to better capture the overall abstract structure of the AST.

Top-level Structures We add top-level patterns by replacing the atomic nodes
and substructures deeper than level 2 with a single symbol X. Additionally, to
separate the function body and arguments, we append the arity of the func-
tion to the corresponding converted symbol. As an example, consider the term
f(g(b, c), a) consisting of atoms a, b, c, f, g. We first replace a, f, g with X because
they are atomic. We further transform f and g to X2 according to the number
of their arguments. However, b and c break the depth constraint and should
be merged to a single X. Finally, the concrete term is converted to an abstract
structure X2(X2(X),X). Abstracting a term to its top-level structure is useful for
determining whether a “logical” tactic should be applied. As an illustration, the
presence of X∧X in the goal often indicates that we should perform case analysis
by the split tactic. Since we typically do not need all the nodes of a term to
decide such structural information, and we want to balance the generalization
with specificity, we use the maximum depth 2.
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Premise and Goal Separation Because local hypotheses typically play a very
different role than the conclusion of a proof state, we separate their feature spaces.
This can be done by serially numbering the features and adding a sufficiently
large constant to the goal features.

Adding Occurrence Counts In the first version of Tactician, we have used
only a simple boolean version of the features. We try to improve on this by adding
the number of occurrences of each feature in the proof state.

3 Prediction Models

3.1 Locality Sensitive Hashing Forests for Online k-NN

One of the simplest methods to find correlations between proof states is to define
a metric or similarity function d(x, y) on the proof states. One can then extract
an ordered list of length k from a database of proof states that are as similar
as possible to the reference proof state according to d. Assuming that d does a
good job identifying similar proof states, one can then use tactics known to be
useful in a known proof state for an unseen proof state. In this paper, we refer
to this technique as the k-nearest neighbor (k-NN) method (even though this
terminology is somewhat overloaded in the literature).

Our distance function is based on the features described in Section 2. We
compare these features using the Jaccard index J(f1, f2). Optionally, features
can be weighted using the TfIdf statistic [18], in which case the generalized index
Jw(f1, f2) is used.

J(f1, f2) =
|f1 ∩ f2|
|f1 ∪ f2|

tfidf(x) = log
N

|x|N
Jw(f1, f2) =

∑
x∈f1∩f2

tfidf(x)∑
x∈f1∪f2

tfidf(x)

Here N is the database size, and |x|N is the number of times feature x occurs in
the database. In previous work, we have made a more detailed comparison of
similarity functions [4].

A naive implementation of the k-NN method is not very useful in the online
setting because the time complexity for a query grows linearly with the size of
the database. Indexing methods, such as k-d trees, exist to speed up queries [3].
However, these methods do not scale well when the dimensionality of the data
increases [17]. In this work, we instead implement an approximate version of
the k-NN method based on Locality Sensitive Hashing (LSH) [16]. This is an
upgrade of our previous LSH implementation that was not persistent and was
slower. We also describe our functional implementation of the method in detail
for the first time here.

The essential idea of this technique is to hash feature vectors into buckets
using a family of hash functions that guarantee that similar vectors hash to the
same bucket with high probability (according to the given similarity function).
To find a k-NN approximation, one can simply return the contents of the bucket
corresponding to the current proof state. For the Jaccard index, the appropriate
family of hash functions are the MinHash functions [7].



Online Machine Learning Techniques for Coq: A Comparison 5

The downside of the naive LSH method is that its parameters are difficult to
tune. The probability that the vectors that hash to the same bucket are similar
can be increased by associating more than one hash function to the bucket. All
values of the hash functions then need to pair-wise agree for the items in the
bucket. However, this will naturally decrease the size of the bucket, lowering
the number of examples k (of k-NN) that can be retrieved. The parameter k
can be increased again by simply maintaining multiple independent bucketing
datastructures. Tuning these parameters is critically dependent on the size of
the database, the length of the feature vectors, and the desired value of k. To
overcome this, we implement a highly efficient, persistent, functional variant
of Locality Sensitive Hashing Forest [2] (LSHF), which is able to tune these
parameters automatically, leaving (almost) no parameters to be tuned manually.
Below we give a high-level overview of the algorithm as it is modified for a
functional setting. For a more in-depth discussion on the correctness of the
algorithm, we refer to the previous reference.

LSHFs consist of a forest (collection) of tries T1 . . . Tn. Every trie has an
associated hash function hi that is a member of a (near) universal hashing family
mapping a feature down to a single bit (a hash function mapping to an integer
can be used by taking the result modulus two). To add a new example to this
model, it is inserted into each trie according to a path (sequence) of bits. Every
bit of this path can be shown to be locally sensitive for the Jaccard index [2].
The path of an example is calculated using the set of features that represents the
proof state in the example.

pathi(f) = sort({hi(x) | x ∈ f})

For a given trie T , the subtrie starting at a given path b1 . . . bm can be seen as the
bucket to which examples that agree on the hashes b1 . . . bm are assigned. Longer
paths point to smaller buckets containing less similar examples, while shorter
paths point to larger buckets containing increasingly similar examples. Hence,
to retrieve the neighbors of a proof state with features f , one should start by
finding examples that share the entire path of f . To retrieve more examples, one
starts collecting the subtrees starting at smaller and smaller prefixes of pathi(f).
To increase the accuracy and number of examples retrieved, this procedure can
be performed on multiple tries simultaneously, as outlined in Algorithm 1.

Tuning the LSHF model consists mainly of choosing the appropriate number
of tries that maximizes the speed versus accuracy trade-off. Experiments show
that 11 trees is the optimal value. Additionally, for efficiency reasons, it is a good
idea to set a limit on the depth of the tries to prevent highly similar examples
from creating a deep trie. For our dataset, a maximum depth of 20 is sufficient.

3.2 Online Random Forest

Random forests are a popular machine learning method combining many random-
ized decision trees into one ensemble, which produces predictions via voting [6].
Even though the decision trees are not strong learners on their own, because
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Algorithm 1 Querying the Locality Sensitive Hashing Forest

1: function QueryLSHF(F , f) . F a forest, f a feature set
2: P ← 〈pathi(f) : i ∈ [1..|F|]〉
3: neighbors ← FilterDuplicates(SimultaneousDescend(F , P))
4: Optionally re-sort neighbors according to real Jaccard index

5: function SimultaneousDescend(F , P)
6: Frel ← 〈 if head(P) then left(T ) else right(T ) : T ∈ F when not leaf(T ) 〉
7: Firrel ← 〈 if leaf(T ) then T elseif head(P) then right(T ) else left(T ) : T ∈ F 〉
8: if Frel is empty then
9: neighbors ← empty list

10: else
11: P ′ ← 〈tail(Pi) : i ∈ [1..n]〉
12: neighbors ← SimultaneousDescend(Frel, P ′)

13: if |neighbors| ≥ k then
14: return neighbors
15: else
16: return Append(neighbors, Concatenate(〈 Collect(T : T ∈ Firrel〉)))

they are intentionally decorrelated, the voting procedure greatly improves on top
of their individual predictive performance. The decision trees consist of internal
nodes labeled by decision rules and leaves labeled by examples. In our case, these
are tactics to be applied in the proofs.

Random forests are a versatile method that requires little tuning of its
hyperparameters. Their architecture is also relatively simple, which makes it easy
to provide a custom OCaml implementation easily integrable with Tactician,
adhering to its requirement of avoiding mutable data structures. Direct usage
of existing random forest implementations is impossible due to challenges in
Tactician’s learning setting. These challenges are: (1) numerous sparse features,
(2) the necessity of online learning, as detailed in the next two paragraphs.

The decision rules in nodes of the decision trees are based on the features of
the training examples. These rules are chosen to maximize the information gain,
i.e., to minimize the impurity of the set of labels in the node.5 There are more
than 37, 000 binary and sparse features in Tactician. Since the learner integrated
with Tactician needs to be fast, one needs to be careful when optimizing the
splits in the tree nodes.

Random forests are typically trained in an offline manner where the whole
training data is available at the beginning of the training. In Tactician this would
be quite suboptimal. To take advantage of the locality of proof similarity and
to be able to use data coming from new proofs written by a user, we want to
immediately update the machine learning model after each proof.

There are approaches to turn random forests into online learners [10,25] which
inspired our implementation. The authors of [10] propose a methodology where
new training examples are passed to the leaves of the decision trees, and under

5 If we have labels {a, a, b, b, b}, ideally, we would like to produce a split which passes
all the examples with label a to one side and the examples with b to the other side.
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Algorithm 2 Adding training a example e to a decision tree T
1: function AddExampleToTree(T , e)
2: match T with
3: Node(R, Tl, Tr): . R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)

6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))

7: Leaf(l, E): . l – label/tactic, E – examples
8: E ← Append(E , e)
9: if SplitCondition(E) then

10: R ← GenerateSplitRule(E)
11: E l, Er ← Split(R, E)
12: ll ← label of random example from El
13: lr ← label of random example from Er
14: return Node(R, Leaf(ll, El), Leaf(lr, Er))
15: else
16: return Leaf(l, E)

certain statistical conditions, the leaf is split and converted to a new decision
node followed by two new leaves. We take a similar approach, but deciding a
split in our implementation is simpler and computationally cheaper.

The pseudocode describing our implementation is presented below. Algo-
rithm 2 shows how the training examples are added to the decision trees. A new
training example is passed down the tree to one of its leaves. The trajectory
of this pass is governed by binary decision rules in the nodes of the tree. Each
rule checks whether a given feature is present in the example. Once the example
reaches a leaf, it is saved there, and a decision is made whether to extend the tree
(using function SplitCondition). This happens only when the Gini Impurity
measure [21] on the set of examples in the leaves is greater than a given impurity
threshold i (a hyperparameter of the model). When the split is done, the leaf
becomes an internal node with a new split rule, and the collected examples
from the leaf are passed down to the two new leaves. The new rule (an output
from GenerateSplitRule) is produced in the following way. N features are
selected from the features of the examples, where N is the square root of the
number of examples. The selection of the features is randomized and made in
such a way that features that are distinguishing between the examples have
higher probability: First, we randomly select two examples from the leaf, and
then we randomly select a feature from the difference of sets of features of the
two examples. Among such selected features, the one maximizing the information
gain [21] of the split rule based on it is selected. The two new leaves get labels
randomly selected from the examples belonging to the given leaf.

When adding an example to a random forest (Algorithm 3), first, a decision
is made whether a new tree (in the form of a single leaf) should be added to
the forest. It happens with probability 1

n , where n is the number of trees in the
forest under the condition that n is lower than a given threshold.
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Algorithm 3 Adding a training example e to a random forest F
1: function AddExampleToForest(F , e, nmax) . nmax – max number of trees
2: n ← number of trees in F
3: m ← random number from {1, . . . n}
4: Fupdated ← empty list
5: if n < nmax and m = 1 then
6: T ← leaf labeled by tactic used in e
7: Fupdated ← Append(Fupdated, T )

8: for all T ∈ F do
9: T ← AddExampleToTree(T , e)

10: Fupdated ← Append(Fupdated, T )

11: return Fupdated

Algorithm 4 Predicting labels for unlabeled e in the random forest F
1: function PredictForest(F , e)
2: P ← empty list . P – predictions
3: for all T ∈ F do
4: t ← PredictTree(e)
5: append t to P
6: R← Vote(P) . R – ranking of tactics
7: return R
8: function PredictTree(T , e)
9: match T with

10: Node(R, T l, T r):
11: match R(e) with
12: Left: return PredictTree(T l, e)

13: Right: return PredictTree(T r, e)

14: Leaf(l, E): return l

Predicting a tactic for a given example with a random forest (Algorithm 4)
is done in two steps. First, the example is passed to the leaves of all the trees
and the labels (tactics) in the leaves are saved. Then the ranking of the tactics is
made based on their frequencies.

Tuning Hyperparameters There are two hyperparameters in our implemen-
tation of random forests: (1) the maximal number of trees in the forest and (2)
the impurity threshold for performing the node splits. To determine the influence
of these parameters on the predictive power, we perform a grid search. For this,
we randomly split the data that is not held out for testing (see Section 4.1)
into a training and validation part. The results of the grid search are shown in
Figure 1. The best numbers of trees are 160 (for top-1 accuracy) and 320 (for
top-10 accuracy). We used these two values for the rest of the experiments. For
the impurity threshold, it is difficult to see a visible trend in performance; thus
we selected 0.5 as our default.
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Fig. 1. Results of hyperparameter tuning for random forests. The blue circle corresponds
to top-10 accuracy (how often the correct tactic was present in the first 10 predictions)
whereas the red square corresponds to top-1 accuracy.
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3.3 Boosted Trees

Gradient boosted decision trees are a state-of-the-art machine learning algorithm
that transforms weak base learners, decision trees, into a method with stronger
predictive power by appropriate combinations of the base models. One efficient
and powerful implementation is the XGBoost library. Here, we perform some
initial experiments in an offline setting for tactic prediction. Although XGBoost
can at the moment not be directly integrated with Tactician, this gives us a
useful baseline based on existing state-of-the-art technology. Below, we illustrate
a procedure of developing our XGBoost model based on binary logistic regression.

The input to XGBoost is a sparse matrix containing rows with the format of
(φP , φT ) where φP includes the features of a proof state, and φT characterizes
a tactic related to the proof state. We transform each proof state to a sparse
feature vector φP containing the features’ occurrence counts. Since there may be
a large number of features in a given Coq development environment, which may
hinder the efficiency of training and prediction, it is reasonable to decrease the
dimension of the vectors. We hash the features to 20, 000 buckets by using the
modulo of the feature’s index. As above, we also remap the tactic hashes to a
20, 000-dimensional space separated from the state features.

The training examples get labels 1 or 0 based on the tactics being useful or
not for the proof state. A tactic for a certain proof state is labeled as positive
if it is exactly the one applied to this state in the library. In contrast, negative
tactics are elements in the tactic space that differ from the positive instance. We
obtain negative data by two approaches: strong negatives and random negatives.
Strong negative instances are obtained by arbitrarily selecting a subset from
the best-100 k-NN predictions for this state. In the other approach, negative
instances are arbitrarily chosen from the entire tactic space.

With a trained gradient boosted trees model, we can predict the scores of
the tactics for an unseen proof state P . First, the top-100 k-NN predictions are
preselected. Then, for each tactic, we input (φP , φT ) to the model to obtain the
score of T . The tactics are then sorted according to their scores.
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Fig. 2. Results of hyperparameter tuning for gradient boosted trees. In consistence
with Figure 1, the blue circle (red square) corresponds to top-10 (top-1) accuracy,
respectively. The graph of negative ratios contains two additional curves of random
negative examples. The brown circle relates to top-10 accuracy, whereas the black star
presents the results of top-1 accuracy.
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Tuning Hyperparameters Similarly as for the random forest model (Sec-
tion 3.2), we optimize the most important hyperparameters of the XGBoost
training algorithm on the data coming from the non-sink nodes in the depen-
dency graph of Coq’s standard library (see Section 4.1). One essential parameter
is the ratio of negative examples. Ratio n indicates that we generate n negative
instances for each recorded proof state. Other influential parameters that we tune
are: eta (learning-rate), number of trees, and max depth. Due to the limitations of
computing resources, we assume a set of default parameters: ratio = 8, eta = 0.2,
number of trees = 500, max depth = 10, and then separately modify each of these
parameters to observe the influence caused by the change, which is depicted in
Figure 2. Both strong and random negatives are evaluated. Obviously, strong
negatives perform better than random negatives, and increasing the negative
ratios will certainly lead to higher success rates. The figure also shows that a
higher number of trees results in better performance. Learning rates are between
0.08 and 0.64 give good results. It is also apparent that deeper trees (at least 8)
increase the accuracy.
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Table 1. Performance of the three tested machine learning models in two types of
evaluation: using a split of the dataset and a chronological evaluation through the
dataset. top-n refers to the frequency of the correct tactic being present in the first n
predictions from a machine learning model.

Machine learning system

k-NN Random Forest XGBoost

Evaluation type top-1 top-10 top-1 top-10 top-1 top-10

split 18.8% 34.2% 32.1% 41.2% 18.2% 38.2%
chronological 17.3% 43.7% 29.9% 58.9% 18.2% 43.4%

Experimental Setup The XGBoost model is evaluated on the task of tactic
prediction both in the split setting and the chronological setting (illustrated
in Section 4). We use the strong negative examples and determine the final
parameters—ratio = 16, eta = 0.2, number of trees = 1024, max depth = 10—for
generating a model from non-sink nodes and use that to predict for sink nodes.

Since the entire dataset contains approximately 250, 000 proof states, and it
is time-consuming to generate a unique XGBoost model for each test case, we
propose several ways to speed up the chronological evaluation. Instead of training
on the data from all preceding states, we merely provide 1, 000 instances occurring
previously as the training data. According to the results of parameter tuning
depicted in Figure 2, we decide on the hyperparameters—ratio = 4, eta = 0.2,
number of trees = 256, max depth = 10—to balance the accuracy and efficiency.

4 Experimental Evaluation

To compare the performance of the described machine learning models, we
perform three kinds of experiments: split evaluation, chronological evaluation,
and evaluation in Tactician. Achieving good performance in the last type of
evaluation is the main goal. All three machine learning models are evaluated in
the first two kinds of experiments, while in Tactician we only evaluate k-NN and
online random forest. This is because the XGBoost system, while being potentially
the strongest machine learner among tested, may not be easily turned into an
online learner and integrated into Tactician. We adopt the original features—
term and term pairs—for evaluation outside Tactician, whereas both the original
features and the new are tested on Tactician’s benchmark. To determine the
relative importance of the feature classes described in Section 2, we benchmark
the addition of each class separately in Tactician. All evaluations are performed
on data extracted from the standard library of Coq 8.11.

4.1 Split Evaluation

In the directed acyclic graph of dependencies of the Coq modules, there are 545
nodes. 104 of them are sink nodes, i.e., these are the modules that do not appear
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among dependencies of any other module. We used these modules as final testing
data for evaluation outside Tactician. The rest of the data was randomly split
into training and validation parts and was used for parameter tuning of random
forest and gradient boosted trees. The models with tuned hyperparameters were
evaluated on the testing data. The results of the evaluation of the three tested
models are shown in the first row of Table 1.

4.2 Chronological Evaluation

Although the split evaluation from the previous experiment is interesting, it does
not correspond entirely to the Tactician’s internal mode of operation. To simulate
the real-world scenario in an offline setting, we create an individual model for
each proof state by learning from all the previous states—data from dependent
files and preceding lines in the local file. The second row of Table 1 presents the
results of the evaluation in chronological order.

4.3 Evaluation in Tactician

Table 2 shows the results of the evaluation of two online learners—the k-NN and
the random forest—within Tactician. The hyperparameters of the random forest
model were chosen based on the grid search in Section 3.2. We run the proof
search for every lemma in the library with a 40-second time limit on both the
original and the improved features.

The random forest performed marginally better than k-NN on both kinds of
features. With old features the k-NN proved 3831 lemmas (being 33.7% out of
all 11370), whereas the random forest proved 4011 lemmas (35.3% of all). With
the new features, both models performed better, and again, the random forest
proved more lemmas (4117, 36.2% of all) than k-NN (3945, 34.7% of all).

It is somewhat surprising that the random forest, which performed much
better than k-NN on the split in the offline evaluation, is only better by a small
margin in Tactician. This may be related to the time and memory consumption
of random forest, which may be higher than for k-NN on certain kinds of data.6

It is worth noting that k-NN and random forest resulted in quite different
sets of proofs. The columns marked as union show that the size of the union of
proofs constructed by the two models is significantly larger than the number of
proofs found by each model separately. In total, both models resulted in 4503
(39.6%) proofs using old features and 4597 (40.4%) proofs using the new features.

4.4 Feature Evaluation

Table 3 depicts the influence of adding the new classes of features described in
Section 2 to the previous baseline.7 All of the newly produced features improve

6 Doing the splits in the leaves has quadratic time complexity with respect to the
number of examples stored in the leaf; sometimes it happens, that leaves of the trees
store large number of examples.

7 The results here are not directly comparable to those in Table 2 mainly due to the
usage of a non-indexed version of k-NN in contrast to the algorithm presented in 1.
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Table 2. Proving performance of two online learners integrated with Tactician, k-
NN and random forest, in the Coq Standard Library. The percentages in the table
correspond to the fraction of lemmas proved in a given Coq module. The columns union
show what fraction of the lemmas was proved by at least one of the learners. RF is an
abbreviation of random forest.

Coq module #Lemmas Features type

Original New

k-NN RF union k-NN RF union

All 1137 33.7% 35.3% 39.6% 34.7% 36.2% 40.4%
Arith 293 52% 59% 65% 56% 59% 66%
Bool 130 93% 87% 93% 92% 88% 92%
Classes 191 80% 76% 81% 79% 79% 83%
FSets 1137 32% 34% 37% 32% 35% 39%
Floats 5 20% 20% 20% 40% 19% 40%
Init 164 73% 51% 73% 73% 56% 73%
Lists 388 38% 43% 47% 38% 44% 49%
Logic 341 31% 27% 34% 32% 31% 35%
MSets 830 38% 40% 43% 36% 40% 43%
NArith 288 37% 43% 44% 35% 42% 47%
Numbers 2198 23% 22% 27% 24% 23% 27%
PArith 280 31% 40% 44% 35% 39% 45%
Program 28 75% 64% 75% 78% 66% 78%
QArith 295 33% 40% 43% 31% 39% 45%
Reals 1756 19% 23% 25% 21% 24% 26%
Relations 37 29% 24% 40% 27% 26% 29%
Setoids 4 1.00 1.00 1.00 1.00 97% 1.00
Sets 222 43% 42% 49% 49% 47% 53%
Sorting 136 26% 29% 33% 25% 30% 33%
Strings 74 22% 22% 27% 17% 14% 20%
Structures 390 45% 49% 54% 51% 51% 56%
Vectors 37 37% 29% 40% 21% 23% 27%
Wellfounded 36 19% 05% 19% 16% 13% 16%
ZArith 953 41% 46% 49% 40% 43% 46%
btauto 44 11% 20% 20% 20% 17% 22%
funind 4 75% 50% 75% 50% 73% 75%
micromega 339 21% 27% 29% 27% 25% 30%
nsatz 27 33% 33% 37% 40% 26% 40%
omega 37 40% 67% 67% 48% 63% 64%
rtauto 33 30% 39% 48% 33% 44% 51%
setoid ring 362 21% 23% 26% 27% 27% 30%
ssr 311 68% 55% 69% 70% 57% 71%

the success rates. However, the top-down oriented AST walks contribute little,
probably due to Tactician having already included term tree walks up to length
2. Every other modification obtains a reasonable improvement, which confirms
the intuitions described in Section 2.
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Table 3. Proving performance of each feature modification. O,W,V, T ,S, C denote
original features, top-down oriented AST walks, vertical abstract walks, top-level
structures, premise and goal separation, and adding feature occurrence, respectively.
The symbol ⊕ denotes that we combine the original features and a new modification
during the experiments.

Features O O ⊕W O ⊕ V O ⊕ T O ⊕ S O ⊕ C
Success rates (%) 32.75 32.82 34.16 33.65 34.42 34.97

5 Related Work

Random forests were first used in the context of theorem proving by Färber [12],
where multi-path querying of a random forest would improve on k-NN results
for premise selection. Nagashima and He [22] proposed a proof method recom-
mendation system for Isabelle/HOL based on decision trees on top of precisely
engineered features. A small number of trees and features allowed for explainable
recommendations. Frameworks based on random boosted trees (XGBoost, Light-
GBM) have also been used in automated reasoning, in the context of guiding
tableaux connection proof search [19] and the superposition calculus proof search
[9], as well as for handling negative examples in premise selection [24].

Machine learning to predict tactics was first considered by Gauthier et al. [14]
in the context of the HOL4 theorem prover. His later improvements [15] added
Monte-Carlo tree search, tactic orthogonalization, and integration of both Metis
and a hammer [13]. A similar system for HOL Light was developed by Bansal et
al. [1]. Nagashima and Kumar developed the proof search component [23] of such
a system for Isabelle/HOL. This work builds upon Tactician [5,4], adapting and
improving these works for dependent type theory and the Coq proof assistant.

6 Conclusion

We have implemented several new methods for learning tactical guidance of
Coq proofs in the Tactician system. This includes better proof state features
and an improved version of approximate k-nearest neighbor based on locality
sensitive hashing forests. A completely new addition is our online implementation
of random forest in Coq, which can now be used instead of or together with the
k-nearest neighbor. We have also started to experiment with strong state-of-the-
art learners based on gradient boosted trees, so far in an offline setting using
binary learning with negative examples.

Our random forest improves very significantly on the k-nearest neighbor in
an offline accuracy-based evaluation. In an online theorem-proving evaluation,
the improvement is not as big, possibly due to the speed of the two methods
and the importance of backtracking during the proof search. The methods are,
however, quite complementary and running both of them in parallel increases
the overall performance of Tactician from 33.7% (k-NN with the old features)
to 40.4% in 40s. Our best new method (RF with the new features) now solves
36.2% of the problems in 40s.
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The offline experiments with gradient boosted trees are so far inconclusive.
They outperform k-nearest neighbor in top-10 accuracy, but the difference is
small, and the random forest performs much better in this metric. Since the
random forest learns only from positive examples, this likely shows that learning
in the binary setting with negative examples is challenging on our Tactician
data. In particular, we likely need good semantic feature characterizations of the
tactics, obtained e.g., by computing the difference between the features of the
proof states before and after the tactic application. The experiments, however,
already confirm the importance of choosing good negative data to learn from in
the binary setting.
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theorem proving. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31, pp. 8836–8847. Curran Associates, Inc. (2018)
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