
J. Automated Reasoning manuscript No.
(will be inserted by the editor)

Machine Learning Guidance for Connection Tableaux

Michael Färber · Cezary Kaliszyk ·
Josef Urban

Abstract Connection calculi allow for very compact implementations of goal-directed
proof search. We give an overview of our work related to connection tableaux calculi:
First, we show optimised functional implementations of connection tableaux proof
search, including a consistent Skolemisation procedure for machine learning. Then,
we show two guidance methods based on machine learning, namely reordering of
proof steps with Naive Bayesian probabilities, and expansion of a proof search tree
with Monte Carlo Tree Search.

1 Introduction

Connection calculi enable goal-directed proof search in a variety of logics. Connections
were considered among others for classical first-order logic (Letz et al., 1992), for
higher-order logic (Andrews, 1989) and for linear logic (Galmiche, 2000).

An important family of connection provers for first-order logic is derived from
leanCoP (Otten and Bibel, 2003; Otten, 2008). leanCoP was inspired by leanTAP
(Beckert and Posegga, 1995), which is a prover based on free-variable semantic
tableaux. leanTAP popularised lean theorem proving, which uses Prolog to maximise
efficiency while minimising code. The compact Prolog implementation of lean theorem
provers made them attractive for experiments both with the calculus and with the
implementation. For example, leanCoP has been adapted for intuitionistic (ileanCoP
(Otten, 2005)), modal (MleanCoP (Otten, 2014)), and nonclausal first-order logic
(nanoCoP (Otten, 2016)). The intuitionistic version of leanCoP (Otten, 2005) became
the state-of-art prover for first-order problems in intuitionistic logic (Raths et al.,

M. Färber
University of Innsbruck, Austria
E-mail: michael.faerber@gedenkt.at

C. Kaliszyk
University of Innsbruck, Austria
E-mail: cezary.kaliszyk@uibk.ac.at

J. Urban
Czech Technical University in Prague, Czech Republic
E-mail: josef.urban@gmail.com

2 Michael Färber et al.

2007). A variant of leanCoP with interpreted linear arithmetic (leanCoP-Ω) won the
TFA division of CASC-J5 (Sutcliffe, 2011). Various implementation modifications
can be performed very elegantly, such as search strategies, scheduling, restricted
backtracing (Otten, 2010), randomization of the order of proof search steps (Raths
and Otten, 2008), and internal guidance (Urban et al., 2011; Kaliszyk and Urban,
2015a).

We have used connection provers from the leanCoP family as a basis for experi-
ments with machine learning (see section 5) and proof certification (Kaliszyk et al.,
2015a). For these applications, we implemented connection provers in functional
instead of logic programming languages. There are several reasons: First, a large
number of interactive theorem provers (ITPs), such as HOL Light (Harrison, 2009),
HOL4 (Slind and Norrish, 2008), Isabelle (Wenzel et al., 2008), Coq (Bertot, 2008),
and Agda (Bove et al., 2009) are written in functional programming languages, lend-
ing themselves well to integration of functional proof search tactics. Second, several
machine learning algorithms such as Naive Bayes and k-NN have been implemented
efficiently for ITPs in functional languages (Kaliszyk and Urban, 2015b; Blanchette
et al., 2016b). Third, we achieve better performance with functional-style implemen-
tations, which is important to compensate for the performance penalty incurred by
machine learning.

In this paper we develop an integration of internal guidance based on machine
learning and Monte Carlo methods in connection-style proof search. The contributions
described in this paper are:

– We implement proof search based on clausal and nonclausal connection tableaux
calculi in functional programming languages, improving performance upon previ-
ous Prolog-based implementations, see section 3.

– We show a method to order proof search steps by using a Naive Bayes classifier
based on previous proofs, see section 4.

– We use Monte Carlo Tree Search to guide connection proof search, see section 5.
To this end, we propose and evaluate several proof state evaluation heuristics,
including two that learn from previous proofs.

The paper combines, compares, and extends our works presented at LPAR 2015
(Kaliszyk and Urban, 2015a) and CADE 2017 (Färber et al., 2017). The techniques
added over the conference versions include: consistent Skolemisation applicable also
for nonclausal proof search and efficient functional-style implementation of proof
search in clausal and nonclausal connection calculi.1

2 Connection Calculi

Connection calculi provide a goal-oriented way to search for proofs in classical
and nonclassical logics (Otten, 2008). Common to these calculi is the concept of
connections {P,¬P} between literals P and ¬P , which correspond to closing a branch
in the tableaux calculus (Hähnle, 2001). Among these calculi are the connection
method (Bibel, 1983, 1987), the connection tableau calculus (Letz and Stenz, 2001),
and model elimination (Loveland, 1968).

1 The source code of all implementations in this article is available at http://cl-informatik.
uibk.ac.at/users/mfaerber/cop.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html
http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

Machine Learning Guidance for Connection Tableaux 3

Axiom A
{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is a copy of C1 ∈M

Reduction C,M,Path ∪ {L′}
R

C ∪ {L},M, Path ∪ {L′}
where σ(L) = σ(L′)

Extension C2 \ {L′},M, Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path

where C2 is a copy of C1 ∈M and L′ ∈ C2 with σ(L) = σ(L′)

Fig. 1: Clausal connection calculus rules.

In this section, we introduce the clausal connection calculus that we will use
throughout the paper. As this calculus has a small set of rules, it lends itself very
well to machine learning. For a description of the rules of the nonclausal connection
calculus, we refer to (Otten, 2011).

The connection calculi in this paper operate on matrices, where a matrix is a
set of clauses. In the clausal connection calculus, a clause is a set of literals. In the
nonclausal calculus, clauses do not only contain literals, but also matrices, giving
rise to a nested structure. We use the symbols M for a matrix, C for a clause, L
for a literal, x for a variable, and ~x for a sequence of variables, as in ∀~x.P (~x). A
substitution σ is a mapping from variables to terms. The complement L is A if L
has the shape ¬A, otherwise, L is ¬A. A σ-complementary connection {L,L′} exists
if σL = σL′. Given a relation R, its transitive closure is denoted by R+ and its
transitive reflexive closure by R∗.

We now give a definition of the common parts of the clausal and nonclausal
connection calculi.

Definition 1 (Connection Calculus, Connection Proof) The words of a con-
nection calculus are tuples 〈C,M,Path〉, where C is a clause, M is a matrix, and
Path is a set of literals called the active path. C and Path can be empty, denoted
ε. In the calculus rules, σ is a term substitution and {L,L′} is a σ-complementary
connection. The substitution σ is global (or rigid), i.e. it is applied to the whole
derivation. A connection proof for 〈C,M,Path〉 is a derivation in a connection calcu-
lus for 〈C,M,Path〉 in which all leaves are axioms. A connection proof for M is a
connection proof for 〈ε,M, ε〉.

To complete the definition of the clausal connection calculus, we present the
calculus rules in Figure 1.

Given an order <, we can write sets as ordered sequences [X1, . . . , Xn], where
for all i < n, Xi < Xi+1. Clauses and matrices can thus be shown as horizontal and
vertical sequences, respectively.

Example 1 Consider the following formula F and its prenex conjunctive normal form
F ′. We will show that F ′ implies ⊥:

F = Q ∧ P (a) ∧ ∀x.(¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)))
F ′ = ∀x.(Q ∧ P (a) ∧ (¬P (x) ∨ ¬P (s2x)) ∧ (¬P (x) ∨ P (sx) ∨ ¬Q))

4 Michael Färber et al.

A
{}, M̄ , {Q,¬P (x′)}

A
{}, M̄ , . . .

A
{}, M̄ , . . .

E
{¬P (x̄)}, M̄ , {Q,P (sx′), P (sx̂)}}

A
{}, M̄ , {Q,P (sx′)}

R
{¬Q}, M̄ , {Q,P (sx′)}

E
{P (sx̂),¬Q}, M̄ , {Q,P (sx′)}

A
{}, M̄ , {Q}

E
{P (sx′)}, M̄ , {Q}

E
{¬P (x′), P (sx′)}, M̄ , {Q}

A
{}, M̄ , {}

E
{Q}, M̄ , {}

S
ε, M̄, ε

Fig. 2: Clausal connection proof.

For brevity, we write sx for s(x) and s2x for s(s(x)). The clausal matrix M ′ corre-
sponds to F ′:

M ′ =

[Q] [P (a)]

[
¬P (x)
¬P (s2x)

]¬P (x)
P (sx)
¬Q

A formal proof for M ′ in the clausal connection calculus is given in Figure 2.

Soundness and completeness have been proved both for the clausal (Letz and
Stenz, 2001) and for the nonclausal connection calculus (Otten, 2011). We will discuss
practical functional-style implementations of proof search for both calculi in section 3.

3 Functional-style Connection Prover

In this section, we develop an efficient implementation of a connection prover for
classical first-order logic in a functional programming language. The resulting imple-
mentation will be the basis for all experiments in the remainder of the paper.

The connection prover performs the following tasks. Given a classical first-order
logic problem, it creates a matrix for the problem, see subsection 3.1. The matrix
is then used to build an index that provides an efficient way to find connections
during proof search, see subsection 3.3. Finally, proof search with iterative deepening
is performed, see subsection 3.4.

3.1 Problem Preprocessing

In this section, we show how the prover transforms problems into formulas and
processes them to yield a matrix. We focus on first-order logic problems represented
as a set of axioms {A1, . . . , An} together with a conjecture C, where all axioms and
the conjecture are closed formulas. The goal is to show that the axioms imply the
conjecture. For convenience, in the actual implementation we use the TPTP format
(Sutcliffe, 2009b) as input. Each parsed input problem is transformed according to
the following procedure. Only the steps 2 and 6 differ in comparison with the original
Prolog implementations of leanCoP and nanoCoP (Otten, 2008, 2016).

1. The conjecture C is combined with the axioms {A1, . . . , An} to form the new
problem (A1 ∧ · · · ∧An)→ C (just C if no axioms are present).

Machine Learning Guidance for Connection Tableaux 5

2. Constants and variables are mapped to integers, to enable more efficient lookup
and comparison during the proof search, as needed e.g. for fast unification.

3. As the connection tableaux calculi considered in this paper do not have special
rules for equality, equality axioms are added to the problem if equality appears in
the original problem. The axioms are symmetry, reflexivity, and transitivity

∀x.x = x (refl=)
∀xy.x = y → y = x (sym=)

∀xyz.x = y ∧ y = z → x = z (trans=)

as well as congruence:
– For every n-ary function f , the formula x1 = y1 → . . . → xn = yn →
f(x1, . . . , xn) = f(y1, . . . , yn) is introduced.

– For every n-ary predicate P , the formula x1 = y1 → . . . → xn = yn →
P (x1, . . . , xn)→ P (y1, . . . , yn) is introduced.

4. If the formula has the shape P → C, then it is transformed to the equivalent
(P ∧#)→ (C ∧#). # is a marker that can be understood to be equivalent to >.
It allows proof search to recognise clauses stemming from the conjecture (Otten,
2008, section 2.1).

5. Implications and equivalences are expanded, e.g. A→ B becomes ¬A ∨B.
6. Quantifiers are pushed inside so that their scope becomes minimal.
7. The formula is negated (to perform a proof by refutation) and converted to

negation normal form.
8. The formula is reordered so that smaller clauses are processed earlier. In nanoCoP,

the size of a formula is

paths(t) =

paths(t1)× paths(t2) if t = t1 ∧ t2
paths(t1) + paths(t2) if t = t1 ∨ t2
paths(t1) if t = ∀x.t1 or t = ∃x.t1
1 if t is a literal

and for any subformula t1 ∧ t2 or t1 ∨ t2, if paths(t1) > paths(t2), then t1 and t2
are exchanged.

9. The formula is Skolemised. For machine learning, we use consistent Skolemisation
as discussed in subsection 3.2 instead of outer Skolemisation as performed in the
original Prolog version.

Example 2 Consider the axioms

∀xAB.x ∈ A ∪B ↔ (x ∈ A ∨ x ∈ B) (def∪)

∀AB.(∀x.x ∈ A↔ x ∈ B)→ A = B (def=)

that we want to use to prove

∀ABC.A ∪ (B ∪ C) = (A ∪B) ∪ C (C)

The problem is preprocessed as follows:

1. The axioms A ≡ def∪∧def= and the conjecture are combined, resulting in A→ C.

6 Michael Färber et al.

2. Constants and variables are mapped to integers, e.g. {“∈” 7→ 0, “∪” 7→ 1, “=” 7→ 2}
and {“x” 7→ 0, “A” 7→ 1, “B” 7→ 2}. We will continue the presentation of this
example with the original representation.

3. Congruence axioms are generated for all constants, i.e. “∈” and “∪”:

∀x1y1x2y2.(x1 = x2 ∧ y1 = y2) ∧ x1 ∈ y1 → x2 ∈ y2 (cong∈)

∀x1y1x2y2.(x1 = x2 ∧ y1 = y2)→ x1 ∪ y1 = x2 ∪ y2 (cong∪)

The combination of all equality axioms is

((refl= ∧ (sym= ∧ trans=)) ∧ cong∈) ∧ cong∪ (E)

and the resulting formula is E ∧A→ C.
4. The conjecture is marked, resulting in ((E ∧A) ∧#)→ (# ∧ C).
5. Implications and equivalences are unfolded. Among others, this transforms

∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)) ∧ (¬(x ∈ A ∨ x ∈ B) ∨ x ∈ A ∪B) (def∪)

∀AB.((¬∀x.((x /∈ A ∨ x ∈ B) ∧ (x /∈ B ∨ x ∈ A))) ∨A = B) (def=)

The resulting formula is ¬((E ∧A) ∧#) ∨ (# ∧ C).
6. Pushing quantifiers inside transforms for example

(∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)))∧
(∀xAB.(¬(x ∈ A ∨ x ∈ B) ∨ x ∈ A ∪B))

(def∪)

7. The whole formula is negated and converted to negation normal form. In particular,
the negation of the conjecture is

∃ABC.A ∪ (B ∪ C) 6= (A ∪B) ∪ C (C¬)

and the resulting formula is ((E ∧A) ∧#) ∧ (¬# ∨ C¬).
8. Reordering of the formula yields among others

cong∪ ∧ (cong∈ ∧ (refl= ∧ (sym= ∧ trans=))) (E)

(∀xAB.((x /∈ A ∧ x /∈ B) ∨ x ∈ A ∪B))∧
(∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)))

(def∪)

and the resulting formula is (¬#∨C¬)∧ (#∧ ((def= ∧ def∪)∧E)). Note that the
equality axioms move to the end of the formula, so they are being processed last.

9. Skolemisation replaces existentially quantified variables by Skolem terms and
removes existential quantifiers. For example, the Skolemised negated conjecture is

sA ∪ (sB ∪ sC) 6= (sA ∪ sB) ∪ sC (C¬)

where sA, sB , and sC are nullary Skolem functions. We explain Skolemisation in
more detail in subsection 3.2.

Machine Learning Guidance for Connection Tableaux 7

The matrix is built from the resulting formula. For the clausal connection prover,
this involves a transformation of the formula into clausal normal form. The standard
transformation applies distributivity rules of the shape A ∧ (B ∨ C) ≡ (A ∨ B) ∧
(A ∨ C) to the formula until it is in conjunctive normal form. In the worst case, this
transformation makes the formula grow exponentially. To avoid this, the definitional
transformation introduces new symbols (Tseitin, 1983; Plaisted and Greenbaum, 1986;
Otten, 2010). Similarly to Skolemisation, the introduced symbols should be consistent
across different problems, which is achieved by using a normalised string representation
of the clause literals as new symbol names. For the nonclausal connection prover,
no clausification is required, as the formula can be directly transformed into the
nonclausal matrix. For both clausal and nonclausal matrices, the polarity of literals
is encoded by the sign of the integer representing the predicate symbol.

3.2 Consistent Skolemisation

The Skolemisation of a formula ∆ replaces existentially quantified variables occurring
in ∆ by newly introduced function symbols called Skolem functions, yielding a formula
equisatisfiable to ∆ without existential quantifiers. Skolemisation may introduce
distinct Skolem functions when a single Skolem function would have sufficed. For
example, a subformula ∃x.P (x) of two formulas ∆1 and ∆2 may be Skolemised to
P (s1) in ∆1 and to P (s2) in ∆2, such that s1 6= s2. This makes it difficult to spot in
hindsight that s1 and s2 were produced from equivalent subformulas. For machine
learning, however, when we learn something about a formula containing a Skolem
function, such as P (s1), we wish to transfer this knowledge to a different formula
where the same formula was Skolemised to P (s2). To solve this problem, we present a
new Skolemisation method that introduces Skolem functions “consistently”. In general,
a consistent Skolemisation method can instantiate different existentially quantified
variables with the same Skolem functions under certain conditions. For example, a
consistent Skolemisation method could ensure for the example above that s1 = s2.

Consistent Skolemisation methods have been studied in the context of the δ-rule
in tableaux methods (Beckert et al., 1993). The Skolem terms introduced by such
methods may lead to rather large formulas unless techniques such as structure sharing
are used (Giese and Ahrendt, 1999). However, in our setting, such techniques would
complicate the parallel execution of several prover instances and require the adaption
of both the prover and the machine learning methods. We propose a new consistent
Skolemisation method which produces reasonably small Skolem functions without
relying on structure sharing.

We assume that the formulas in this section are in negation normal form. A
position p is a sequence p1 . . . pn, where every pi is either 0 or 1. The empty sequence
ε denotes the root position, and pq is the concatenation of two positions p and q. The
subformula of F at the position p, denoted as F |p, is defined as follows: F |ε = F ,
and if F = ∃x.G or F = ∀x.G, then F |0p = G|p, and if F = G1 ∧G2 or F = G1 ∨G2,
then F |0p = G1|p and F |1p = G2|p.

The sequence of free variables of F is denoted by FVar(F). The order of the
sequence FVar(F) must not depend on the names of the variables; i.e. for any
bijective substitution σ, if σF = G, then σFVar(F) = FVar(G). The sequence of
existentially/universally quantified variables of a formula F along p is VarQ(F, p) =⋃
i<|p| {x | ∆|p1...pi = Qx.G}, where the sequence is ordered by ascending i and Q ∈

8 Michael Färber et al.

{∀, ∃}. For example, if ∆ = ∀x.∃yz.P (x, y, z) and p = 00, then ∆|p = ∃z.P (x, y, z),
Var∀(∆, p) = [x], and Var∃(∆, p) = [y].

To describe multiple Skolemisation methods, we introduce a Skolemisation
operator Sf (σ,∆, p). This operator is parametrised by a Skolemisation function
f(x, σ,∆, p) = σ′, which yields for a formula σ(∆|p) = ∃x.F an equisatisfiable for-
mula σ′(∆|p0).2 The operator Sf (σ,∆, p) returns the f -Skolemisation of σ(∆|p). It
follows that the f -Skolemisation of ∆ is Sf (∅, ∆, ε). The purpose of a Skolemisation
function is to eliminate a single existential quantifier, whereas the Skolemisation
operator uses the Skolemisation function to eliminate all existential quantifiers of a
formula.

Sf (σ,∆, p) =

Sf (f(x, σ,∆, p), ∆, p0) if ∆|p = ∃x.F
∀x.Sf (σ,∆, p0) if ∆|p = ∀x.F
Sf (σ,∆, p0) ∧ Sf (σ,∆, p1) if ∆|p = F1 ∧ F2

Sf (σ,∆, p0) ∨ Sf (σ,∆, p1) if ∆|p = F1 ∨ F2

σ∆|p if ∆|p = A or ∆|p = ¬A

The Skolemisation function for inner Skolemisation is IS(x, σ,∆, p) = σ ∪
{x 7→ s(~y)} with s denoting a fresh Skolem function symbol and ~y = FVar(σ(∆|p)).
This performs inner Skolemisation from left to right, to avoid nesting of Skolem
functions (Nonnengart, 1996). While producing small formulas, this is not a consistent
Skolemisation method, as all different existentially quantified variables are mapped
to different Skolem functions.

An alternative Skolemisation method uses epsilon notation (Hilbert and Bernays,
1939). The critical axiom of the epsilon calculus is P (t)→ P (εx.P (x)) from which
one can derive ∃x.P (x) ↔ P (εx.P (x)). The Skolemisation function for epsilon-
Skolemisation is then εS(x, σ,∆, p) = σ ∪ {x 7→ εx.σ(∆|p0)}. Epsilon-Skolemisation
maps the subformulas ∃x.P (x) from the introductory example to the same term,
namely P (εx.P (x)), therefore it is a consistent Skolemisation method. However,
epsilon-Skolemisation requires an extension of first-order logic. Furthermore, like
previous consistent Skolemisation methods, it can yield exponentially large formulas
unless structural sharing is used.

The key to obtaining a consistent Skolemisation method for our setting is to
combine inner Skolemisation with epsilon-Skolemisation. We can express any Skolem
term s(~y) introduced by inner Skolemisation by some epsilon term εx.F introduced by
epsilon-Skolemisation. We will show a consistent Skolemisation method that uses this
correspondence, by introducing the same Skolem terms whenever their underlying
epsilon terms are alpha-equivalent.

We now show how to consistently Skolemise a subformula ∃x.F of ∆ at position
p. We will refer to variables that are existentially quantified in ∆ as existential
variables and to variables that are universally quantified in ∆ as universal variables.
Our consistent Skolemisation proceeds in three steps: First, we obtain the smallest
subformula Fmin of ∆ that contains ∆|p and contains no free existential variables. The
minimality of Fmin serves to maximise the number of equivalent existential variables

2 The substitution σ maps existentially quantified variables to their respective Skolem terms.
The new substitution σ′ is a strict superset of σ because it preserves all previously established
mappings to Skolem terms as well as adds a new mapping from the variable x to some Skolem
term.

Machine Learning Guidance for Connection Tableaux 9

∀x1

∃y1

∧

∨

¬

P (x1, y1)

∀x2

∃y2

P (x2, y2)

∀x3

∃y3

Q(x3, y3, y1)

~vm = [x1]

~vm = [x2]

q = ε,
~vq = []

q = ε,
~vq = []

q = 010,
~vq = [x3]

Fig. 3: Illustration of consistent Skolemisation example.

being mapped to the same Skolem function, which is important for learning. Next,
we obtain the position q of ∆|p in Fmin. The idea is that encoding the combination of
Fmin and q in the name of the Skolem function suffices to characterise ∆|p, allowing
to reconstruct the epsilon term εx.F . Finally, we obtain the arguments of the Skolem
function.

1. We show how to obtain Fmin. For this, we determine the path p1 . . . pm that is the
longest prefix of p such that∆|p1...pm does not contain free existential variables. We
obtain this by m = max {i | Var∃(∆, p1 . . . pi) ∩ FVar(∆|p1...pi) = ∅}, from which
we can obtain Fmin = ∆|p1...pm . Because Fmin may contain free universal variables
~vm = FVar(Fmin), we abstract over ~vm to obtain a closed term Fλ = λ~vm.Fmin
that can be alpha-normalised. We call Fα the alpha-normalisation of Fλ.

2. We obtain the position q of ∆|p in Fmin by the equation p = p1 . . . pmq. Let q1,
. . . , qk be all prefixes of q, such that Fmin|qi is an existentially quantified formula.
Note, q1 = ε and qk = q.

3. For each i in [1, k], let vi be the sequence of universal variables that freely occur
in Fmin|qi and do not belong to any of vj where j < i. In other words, vi is the
sequence of universal variables freely occurring in Fmin|qi and bound under the
previous existential quantifier in Fmin, if any.

4. We determine the arguments of the Skolem term to be ~y = ~vmv1 . . . vk.

Putting everything together, the Skolemisation function for our consistent Skolemi-
sation is CS(x, σ,∆, p) = σ ∪

{
x 7→ sFαq (~y)

}
, where sFp denotes a first-order function

symbol that carries in its name the formula F as well as the position p.

Example 3 Our consistent Skolemisation of the introductory example ∃x.P (x) is
P (s∃x.P (x)

ε).

Example 4 Let

∆ = ∀x1∃y1.(¬P (x1, y1) ∨ (∀x2∃y2.P (x2, y2)) ∧ (∀x3∃y3.Q(x3, y3, y1)))

10 Michael Färber et al.

and let ∆n denote the subformula ∃yn. . . . in ∆. The formula ∆ is illustrated in
Figure 3, where an arrow from ∆i to a formula F signifies that F is the Fmin cor-
responding to ∆i, and the arrow labels q and ~vq are q and ~vq corresponding to ∆i.
We then see that Fmin for ∆1 and ∆3 is ∆1, and Fmin for ∆2 is ∆2. Furthermore, let
∆n
λ and ∆n

α be Fλ and Fα for ∆n, respectively. Then ∆1
λ = λx1.∃y1.(¬P (x1, y1) ∨

(∀x2∃y2.P (x2, y2)) ∧ (∀x3∃y3.Q(x3, y3, y1))) and ∆2
λ = λx2.∃y2.P (x2, y2). The po-

sition q of ∆3 in ∆1 is 010. Therefore, our consistent Skolemisation of ∆ is σ∆′,
where

σ =
{
y1 → s

∆1
α

ε (x1), y2 → s
∆2
α

ε (x2), y3 → s
∆1
α

010(x1, x3)
}

∆′ = ∀x1.(P (x1, y1)→ (∀x2.P (x2, y2)) ∧ (∀x3.Q(x3, y3, y1)))

The combination of Fα and q in the newly introduced Skolem function name
allows the reconstruction of the epsilon term which epsilon-Skolemisation would have
introduced for x. We can expand sFαq (~x) with Fα = λ~vm.Fmin to its corresponding
Skolem epsilon term by performing epsilon-Skolemisation of Fmin, obtaining the
epsilon term t that was introduced for the variable that is existentially quantified
at position q in Fmin, and instantiating the free variables of t by beta-reducing
(λ~vm.λ~vq.t)~x, where ~vq = Var∀(Fmin, q) ∩ FVar(Fmin|q).

Encoding Fα and q in the name of a first-order function symbol avoids dedicated
procedures during proof search to decide the equivalence of Skolem functions and
does not require adaptations of the machine learning methods to account for Skolem
functions. The resulting Skolem function names are linear in the size of ∆.

3.3 Connection Search

We explain how the prover efficiently searches for connections that correspond to
extension steps. For this, let us introduce the concept of a contrapositive.

Definition 2 (Clausal Contrapositive) Given a clausal matrix M with C ∈M
and L ∈ C, the formula L→ C \ {L} is a contrapositive of M .

To find a connection with a literal L, it suffices to find a contrapositive of M
with an antecedent L′ such that L and L′ can be unified. The consequent of the
contrapositive can then be used to generate extension clauses.

Example 5 Consider the matrix M ′ from Example 1 on page 3. A contrapositive of
M ′ is Q → (¬P (x) ∨ P (sx)). This contrapositive was used to find the connection
{Q,¬Q} and to generate the corresponding extension clause {¬P (x′), P (sx′)} in
Figure 2.

The original versions of leanCoP and nanoCoP rely on Prolog’s internal literal
indexing to keep a contrapositive database. We considered storing contrapositives
in first-order term indexing structures (Ramakrishnan et al., 2001). However, the
overall effect on the performance of storing contrapositives in a discrimination tree
(Greenbaum, 1986) on the considered datasets is minor, as unification with array
substitutions (see below) is relatively fast. In our implementations, we store all
contrapositives in a hash table indexed by the polarity and the predicate symbol of
the antecedents. To find connections with a literal L, we perform two steps: First,
we retrieve from the hash table all contrapositives whose antecedents have the same

Machine Learning Guidance for Connection Tableaux 11

polarity and predicate symbol as L, and replace their free variables with fresh ones.
Second, we return those contrapositives obtained in the first step whose antecedents
can be unified with L.

Unification is one of the most time-consuming parts of proof search. Therefore
it is crucial to represent data, including substitutions, in a way that allows efficient
unification. The simplest approach to represent substitutions is to use association
lists from variables to terms. This is done e.g. in the HOL Light implementation of
MESON. However, as variable lookup is linear in the number of bound variables,
this approach does not scale well. An improvement over this is to use tree-based
maps, used for example by Metis. Both solutions however incur a significant overhead
in tableaux proof search, where a single large substitution is needed. In functional
languages with efficient support for arrays (e.g. the ML language family, used in many
proof systems), it is more efficient to store the substitution in a single global mutable
array. As variables can be represented by positive integers, the nth array element
contains the term bound to the variable n. By keeping a stack of variables bound in
each prover state, it is also possible to backtrack efficiently: variables removed from
the top of the stack are removed from the global array. This way, backtracking can
be done as if the substitution was contained in a purely functional data structure,
however allowing for more efficient unification.

3.4 Proof Search

Proof search in connection tableaux calculi is analytic, i.e. the proof tree is constructed
bottom-up. As the proof search is not confluent, i.e. making a wrong choice can lead to
a dead-end, backtracking is necessary for completeness. The proof tree is constructed
with a depth-first strategy, which results in an incomplete proof search. To remedy
this, iterative deepening is used, where the maximal path length is increased in every
iteration.

The connection provers leanCoP and nanoCoP use a number of optimisation
techniques, such as regularity, lemmas, and restricted backtracking (Otten, 2010).
When backtracking is restricted, as soon as the proof search finds some proof tree to
close a branch, no other potential proof trees for that branch are considered anymore.
While restricted backtracking loses completeness, it significantly increases the number
of problems solved for various first-order problem classes.

Prolog allows for a very elegant and succinct implementation of proof search. First
attempts to directly integrate machine learning into Prolog leanCoP have suffered
from low speed (Urban et al., 2011). Later, (Kaliszyk and Urban, 2015a; Kaliszyk
et al., 2015a) showed that implementations of leanCoP in a functional programming
language allow for fast machine learning. However, implementing proof search with
restricted backtracking in a functional language is not straightforward.

In this section, we discuss several implementations of a clausal prover loop that can
be adapted to use restricted backtracking: The simplified version of leanCoP shown in
subsubsection 3.4.1 is the smallest, but also the slowest implementation. For the sake
of performance comparison, we take care that all subsequent implementations perform
the proof search in precisely the same order as the original Prolog implementation.
We then introduce purely functional implementations in subsubsection 3.4.2 using
lazy lists and streams. This version slightly increases code size compared to the
Prolog version, but greatly improves performance, as shown in the evaluation in

12 Michael Färber et al.

Listing 1: Clausal proof search in Prolog.

1 prove([],_,_).
2 prove([Lit|Cla],Path,PathLim) :-
3 (-NegLit=Lit;-Lit=NegLit) ->
4 (member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
5 ;
6 lit(NegLit,Cla1),
7 (length(Path,K), K<PathLim -> true ; fail),
8 prove(Cla1,[Lit|Path],PathLim)
9),

10 prove(Cla,Path,PathLim).

subsection 3.5. We also discuss an approach based on continuations, still purely
functional, but more complicated than the stream version. In exchange, this version
has slightly better performance than the stream one, likely due to not having to
allocate memory for (stream) constructors. The fastest, but also most complicated
implementation considered in this paper uses an explicit stack and exceptions for
backtracking. However, as it proves in our evaluation just as many problems as the
continuation-based version, we will only briefly discuss it.

3.4.1 Prolog

A simplified version of the original leanCoP in Prolog is given in Listing 1. We explain
and relate it to the clausal connection calculus introduced in section 2.

The main predicate prove(C, Path, PathLim) succeeds iff there exists a closed
proof tree for 〈C,M,Path〉 with a maximal path length of PathLim. For this, prove
attempts to close the proof tree for the first literal Lit of C in lines 4–9, and if
successful, it continues with the remaining clause Cla of C in line 10.

Let us detail the proof search for the current literal Lit: Line 4 corresponds to
the reduction rule: The branch is closed if the negation of Lit can be unified with a
literal on the Path. Lines 6–8 correspond to the extension rule: The contrapositive
database as explained in subsection 3.3 is implemented by the predicate lit(L, C),
which succeeds iff the matrix contains some clause that can be unified with {L} ∪ C.
This is used to obtain some contrapositive Cla1 for the negation of Lit. If the path
does not exceed the length limit (line 7), new branches are opened for Cla1 in line 8.

Backtracking is handled by the Prolog semantics: For example, if choosing the
first matching contrapositive for Lit leads to the proof search getting stuck, the next
contrapositive will be tried by Prolog.

3.4.2 Lazy Lists and Streams

Proof search in a functional language can be elegantly implemented as a function
from a branch to a lazy list of proofs, where a lazy list is an arbitrarily long list built
on demand. However, as the proof search considers every list element at most once,
the memoization done for lazy lists creates an unnecessary overhead. For that reason,
streams can be used instead of lazy lists, where a stream is a special case of a lazy
list that restricts list elements to be traversed at most once. As our application uses

Machine Learning Guidance for Connection Tableaux 13

Listing 2: Lazy list implementation of clausal proof search.

1 prove [] path lim sub = [sub]
2 prove (lit : cla) path lim sub =
3 let
4 reductions = mapMaybe (unify sub (negate lit)) path
5 extensions = unifyDB sub lit & concatMap
6 (\ (sub1, cla1) ->
7 if lim <= 0 then []
8 else prove cla1 (lit : path) (lim - 1) sub1)
9 in concatMap (prove cla path lim) (reductions ++ extensions)

a common interface for lazy lists and streams, we solely present the lazy list version
here.

Listing 2 shows a functional leanCoP implementation using lazy lists.3 Let us
first introduce the semantics of the used constructs:

– x & f denotes f x.
– \ x -> y stands for a lambda term λx.y.
– unify sub lit1 lit2 unifies two literals lit1 and lit2 under a substitution

sub, returning a new substitution if successful.
– unifyDB sub lit finds all contrapositives in the database which could match

the literal lit under the substitution sub. It returns a list of substitution-
contrapositive pairs. It corresponds to the lit predicate in the Prolog version.

– mapMaybe f l returns the results of f for the elements of l on which f succeeded.
– concatMap f l maps f over all elements of l and concatenates the resulting list

of lists to form a flat list.
– x ++ y is the concatenation of two lists x and y.

The main function prove C Path lim σ returns a list of substitutions [σ1, . . . , σn],
where every substitution σi corresponds to a closed proof tree for 〈C,M,Path〉 with
a maximal path length smaller than lim, where the global initial substitution is σ
and the final substitution is σi.4 Similarly to the Prolog version, prove attempts
to close the proof tree for the first literal lit of C in lines 4–8, and the resulting
substitutions are used to close the proof trees for the remaining clause cla of C in
line 9. Line 4 corresponds to the reduction rule, and lines 5–8 correspond to the
extension rule.5 As we use lazy lists / streams, a substitution σi is only calculated if
proof search failed for all σj with j < i.

3.4.3 Continuations

Continuation passing style (CPS) allows the implementation of algorithms with
complicated control flow in functional languages (Plotkin, 1975). Listing 3 shows a

3 Several of the algorithms shown in this paper rely on lazy evaluation. Therefore, we show
Haskell versions of our algorithms, which are shorter than those in our actual implementation
language OCaml.

4 In this simplified implementation, the actual proof tree is not recorded, in contrast to our
actual implementation. The same holds for the Prolog version.

5 The shown program could be easily improved, for example by moving the check lim <=
0 from line 7 to line 5. However, the actual implementation performs at this place a more
complex check which cannot be moved this way. Therefore we leave the check here as it is.

14 Michael Färber et al.

Listing 3: CPS implementation of clausal proof search.

1 prove [] path lim sub alt rem = rem sub alt
2 prove (lit : cla) path lim sub alt rem = reduce path where
3 reduce (plit : path) =
4 let alt1 = reduce path
5 in case unify sub (negate lit) plit of
6 Nothing -> alt1
7 Just sub1 -> prove cla path lim sub1 alt1 rem
8 reduce [] = extend (unifyDB sub (negate lit))
9

10 extend ((sub1, cla1) : contras) =
11 let alt1 = extend contras
12 in if lim <= 0 then alt1
13 else
14 let rem1 sub alt = prove cla path lim sub alt rem
15 in prove cla1 (lit : path) (lim - 1) sub1 alt1 rem1
16 extend [] = alt

leanCoP implementation using CPS. The main function prove C Path lim σ alt
rem searches for a closed proof tree for 〈C,M,Path〉 with a maximal path length
smaller than lim under the substitution σ. If prove finds such a proof tree, it calls the
rem continuation to treat remaining proof obligations (line 1). Otherwise, prove calls
the alt continuation to backtrack to an alternative (line 16). The reduce function in
lines 3–7 corresponds to the reduction rule, and the extend function in lines 10–15
corresponds to the extension rule. If no more reductions can be performed, extensions
are tried (line 8), and if no more extensions can be performed, we backtrack (line
16). Both reduce and extend define a continuation alt1 (line 4 and 11) to provide
a way to backtrack to the current state and pass it to prove (line 7 and 15). The
extend function additionally defines a continuation rem1 (line 14), which serves to
continue proof search for the clause cla once a proof for the contrapositive clause
cla1 was found (line 15).

3.4.4 Stacks

The last considered implementation uses explicit stacks. There, the main prove
function has the same arguments as the prove function of the stream-based imple-
mentation, plus a stack. This stack contains tuples with information about clauses
that still have to be processed, together with the depth at which the clauses have
been put onto the stack. Once the current clause has been completely refuted, the
next tuple is popped from the stack and the clause in the tuple is processed.

3.5 Evaluation

We evaluate the functional connection provers on several first-order problem datasets,
with statistics given in Table 1:
– TPTP (Sutcliffe, 2009b) is a large benchmark for automated theorem provers. It

is used in CASC (Sutcliffe, 2016b). The contained problems are based on different
logics and come from various domains. In our evaluation we use the nonclausal
first-order problems of TPTP 6.3.0.

Machine Learning Guidance for Connection Tableaux 15

Table 1: Evaluation datasets and the number of contained first-order problems.

Dataset TPTP MPTP Miz40 HL-top HL-msn FS-top FS-msn

Problems 7492 2078 32524 2498 1108 27111 39979

– MPTP2078 (Alama et al., 2014) contains 2078 problems exported from the Mizar
Mathematical Library. This dataset is particularly suited for symbolic machine
learning since symbols are shared between problems. It comes in the two flavours
“bushy” and “chainy”: In the “chainy” dataset, every problem contains all facts
stated before the problem, whereas in the “bushy” dataset, every problem contains
only the Mizar premises required to prove the problem.

– Miz40 contains the problems from the Mizar library for which at least one ATP
proof has been found using one of the 14 combinations of provers and premise
selection methods considered in (Kaliszyk and Urban, 2015c). The problems are
translated to untyped first-order logic using the MPTP infrastructure (Urban,
2004). Symbol names are also used consistently in this dataset, and the problems
are minimised using ATP-based minimisation, i.e., re-running the ATP only with
the set of proof-needed axioms until this set no longer becomes smaller. This
typically leads to even better axiom pruning and ATP-easier problems than in
the Mizar-based pruning used for the “bushy” version above.

– HOL Light: We translate theorems proven in HOL Light to first-order logic,
following a similar procedure as (Kaliszyk and Urban, 2014). We export top-level
theorems (“top”) as well as theorems proven by the MESON tactic (“msn”).6 We
consider the theorems proven in the core of HOL Light (“HL”) as well as those
proven by the Flyspeck project (“FS”), which finished in 2014 a formal proof of
the Kepler conjecture (Hales et al., 2017).

We use a 48-core server with AMD Opteron 6174 2.2GHz CPUs, 320 GB RAM,
and 0.5 MB L2 cache per CPU. Each problem is always assigned one CPU. We run
all provers with a timeout of 10 seconds per problem.

We evaluate several prover configurations in Table 2. As state of the art, we use
the ATPs Vampire 4.0 (Kovács and Voronkov, 2013) and E 2.0 (Schulz, 2013), which
performed best in the first-order category of CASC-J8 (Sutcliffe, 2016a). Vampire
and E are written in C++ and C, respectively, implement the superposition calculus,
and perform premise selection with SInE (Hoder and Voronkov, 2011). Furthermore,
Vampire integrates several SAT solvers (Biere et al., 2014), and E automatically
determines proof search settings for a given problem. We ran E with --auto-schedule
and Vampire with --mode casc. In addition, we evaluated the ATP Metis (Hurd,
2003): It implements the ordered paramodulation calculus (having inference rules for
equality just like the superposition calculus), but is considerably smaller than Vampire
and E and is implemented in a functional language, making it more comparable to
our work.

We implemented functional-style versions of leanCoP 2.1 and nanoCoP 1.0 in the
functional programming language OCaml.7 Our implementations use the techniques

6 As part of exporting theorems solved by MESON, we perform some of the original MESON
preprocessing, such as propositional simplification, Skolemisation, currying and so on. This
preprocessing may solve the problem, in which case we do not export the problem at hand.

7 The source code is available at http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

16 Michael Färber et al.

Table 2: Comparison of provers without machine learning.

Prover TPTP Bushy Chainy Miz40 FS-top FS-msn

Vampire 4404 1253 656 30341 6358 39760
E 3664 1167 287 26003 7382 39740
Metis 1376 500 75 18519 3537 38625

fleanCoP+cut+conj 1859 670 289 12204 3980 35738
fleanCoP+cut−conj 1782 598 244 11796 3520 30668
fleanCoP−cut+conj 1617 499 192 7826 3849 35204
fleanCoP−cut−conj 1534 514 164 11115 3492 36334
pleanCoP+cut+conj 1673 606 182 11243 3664 35234
pleanCoP+cut−conj 1621 548 153 11227 3305 30416
pleanCoP−cut+conj 1428 453 143 7287 3671 34437
pleanCoP−cut−conj 1374 460 123 10442 3415 35499
fnanoCoP+cut 1724 511 192 12332 3178 30327
fnanoCoP−cut 1567 542 151 13316 1993 37938
pnanoCoP+cut 1585 480 112 11921 2970 30272
pnanoCoP−cut 1485 510 126 12943 1986 38015

introduced such as hash-based indexing and array-based substitutions (subsection 3.3),
efficient control flow (subsection 3.4), and consistent Skolemisation (subsection 3.2), as
well as all optimisation techniques of the Prolog implementations, such as regularity,
lemmas, and restricted backtracking. We refer to our functional OCaml implemen-
tations as fleanCoP and fnanoCoP, whereas we refer to the original Prolog versions
as pleanCoP and pnanoCoP. The Prolog versions were run with ECLiPSe 5.10. A
prover configuration containing “+x” or “−x” means that feature x was enabled or
disabled, respectively. “cut” denotes restricted backtracking and “conj” stands for
conjecture-directed search. leanCoP was evaluated without definitional clausification,
see subsection 3.1. The OCaml implementations use streams to control backtracking
(see subsubsection 3.4.2) and arrays as substitutions. As strategy scheduling is not a
focus of this work, we evaluate our provers with disabled strategy scheduling.

The results are shown in Table 2: The OCaml versions outperform the Prolog
versions in almost all cases (the exception being fnanoCoP−cut on the FS-msn
dataset). The most impressive result is achieved by fleanCoP+cut+conj on the
chainy dataset: The OCaml version proves 58.8% more problems than its Prolog
counterpart, thus even passing E. Furthermore, on four out of six datasets, our
strongest configuration proves more problems than Metis.

nanoCoP solves more problems than leanCoP on the datasets Miz40 and FS-msn,
in both cases without cut. However, for both datasets, nanoCoP proves fewer problems
than any of the reference provers Vampire, E, and Metis. In conclusion, in scenarios
where both Metis and leanCoP are available, the current version of nanoCoP cannot
play its theoretical strength8 in any of the datasets evaluated.

We evaluate different proof search implementation styles in Tables 3 and 4. Here,
inferences denote the number of successful unifications performed by some prover on

8 The nonclausal calculus underlying nanoCoP can linearly simulate the clausal calculus un-
derlying leanCoP, but there exist nonclausal proofs of which no clausal equivalent of polynomial
size exists (Otten, 2011).

Machine Learning Guidance for Connection Tableaux 17

Table 3: Impact of implementation on the efficiency of clausal proof search on the
bushy MPTP2078 dataset with 10 seconds timeout, restricted backtracking (+cut),
no definitional CNF, and conjecture-directed search (+conj).

Implementation Solved Inferences

Prolog 606 -
Lazy list 639 878199349
Stack (list substitution) 648 1253862954
Stream 670 1702827032
Continuation 681 2200272406
Stack 681 2490100879

Table 4: Impact of implementation on efficiency of nonclausal proof search on the
bushy MPTP2078 dataset with 10 seconds timeout and restricted backtracking (+cut).

Implementation Solved Inferences

Prolog 480 -
Lazy list 504 374849495
Streams 511 495368962

all problems within 10 seconds timeout. This metric is not available for the Prolog
versions, as these do not print the number of inferences performed when prematurely
terminated.

To measure the impact of the substitution structure, we evaluated the best-
performing implementation, i.e. the stack-based one, using a list-based substitution
instead of an array-based substitution, see Table 3. This decreased the number of
inferences by 50%, showing that the performance of the substitution structure is
crucial for fast proof search.

4 Naive Bayesian Internal Guidance

Internal guidance methods learn making decisions arising during proof search. Such
methods do not influence decisions before proof search, such as which preprocessing
options or which global strategies are used. The guided decisions have a large impact
on the time required to find proofs, and in case of incomplete search strategies they
determine whether a proof will be found at all. Ranking heuristics that learn from
previous proofs are an example of internal guidance. In this section, we propose an
internal guidance method using Naive Bayesian probability to guide connection proof
search based on its intermediate proof state and previous proofs.

The assumption underlying our approach is the following: An action that was
useful in a past state is likely to be useful in similar future states. What do actions,
usefulness, and states signify in our setting of guiding connection proof search? We
consider as action the application of the extension rule with a given contrapositive (see
subsection 3.3), because the order in which extension steps are tried has a significant
effect on the performance of proof search. Furthermore, we consider an action to have

18 Michael Färber et al.

been useful if the extension step ends up in the final proof. Finally, the state in which
an action is performed is the proof branch in which the extension step is applied.

This assumption implies that we can estimate the usefulness of an action in a
present state from the usefulness of the action in similar past states. More specifically,
to estimate the usefulness of a contrapositive in the current proof branch, we can
consider the usefulness of the contrapositive in similar proof branches of previous
proofs. When we have a choice between different contrapositives, we can process them
in order of decreasing estimated usefulness, in order to find proofs faster.

To measure the similarity between proof branches, we characterise them by
features (Kaliszyk et al., 2015b), which we explain in subsection 4.1. In subsection 4.2,
we then calculate the utility of a contrapositive in the current branch, given knowledge
about its utility in previous proofs. In subsection 4.3, we motivate the integration
of machine learning methods in the prover and introduce the prover FEMaLeCoP,
which we evaluate in subsection 4.4.

4.1 Tableau Branch Characterisation

The words of the connection tableaux calculus 〈C,M,Path〉 correspond to a set of
tableau branches sharing the active Path. Therefore, to characterise a branch, we use
as its features the set of symbols occurring in the active path. This does not include
symbols in the substitution.9 We weigh the symbols by the number of times they
appeared in all problems, giving higher weight to rarer symbols via inverse document
frequency (Jones, 1973), as well as by the distance between the current depth and
the depth the symbols were put onto the path, giving higher weight to symbols more
recently processed.

4.2 Naive Bayes

Given a set of contrapositives that are applicable in a tableau branch, we wish to
obtain an ordering of the contrapositives such that trying the contrapositives in the
given order minimises the time spent to find a proof. In this subsection, we show how
to order the set of applicable contrapositives by a formula nb that is based on Naive
Bayesian probability, as used for premise selection (Kaliszyk and Urban, 2015c).

Adopting machine learning jargon, we will refer to contrapositives as labels, and
we say that a label l co-occurred with a set of features ~f if the contrapositive l was
used in a proof branch characterised by features ~f and l contributed to the final
proof, and we say that l occurred if it co-occurred with some set of features. For
this, we introduce a function F (l), which returns the multiset of sets of features that
co-occurred with l, i.e. F (l) = {~f | (l, ~f) ∈ S}. The total number of times that l
occurred is |F (l)|.

Example 6 F (l1) = {{f1, f2} , {f2, f3}} means that the label l1 was used twice previ-
ously; once in a state characterised by the features f1 and f2, and once when features
f2 and f3 were present.

9 It is possible either to consider or to disregard symbols that are introduced by previous
unifications, i.e. symbols in the global substitution. In our experiments, disregarding such
symbols as features turned out to be more beneficial.

Machine Learning Guidance for Connection Tableaux 19

Let P (li, ~f) denote the probability that a label li from a set ~l of potential labels
is useful in a state characterised by features ~f . Using Bayes’ theorem together with
the (naive) assumption that features are statistically independent, we derive

P (li | ~f) = P (li)P (~f | li)
P (~f)

= P (li)
P (~f)

∏
fj∈~f

P (fj | li)

To increase numerical stability, we calculate the logarithm of the probability

lnP (li | ~f) = lnP (li)− lnP (~f) +
∑
fj∈~f

lnP (fj | li)

In the final formula nb(li, ~f) to rank labels, we modify lnP (li | ~f) as follows:

– We add a term to discriminate against features not present in ~f that occurred in
previous situations with the label li.

– We weigh the probability of any feature f by its inverse document frequency
idf(f) to give more weight to rare features.

– We drop the term lnP (~f), as we compare only values for fixed features ~f .
– We weigh the individual parts of the sum with constants σ1, σ2 and σ3.

The resulting formula is

nb(li, ~f) = σ1 lnP (li)

+ σ2
∑
fj∈~f

idf(fj) lnP (fj | li)

+ σ3
∑

fj∈
⋃
F (li)\~f

idf(fj) ln(1− P (fj | li))

The unconditional label probability P (li) is calculated as follows:

P (li) = |F (li)|∑
lj∈~l |F (lj)|

In practice, as the denominator of the fraction is the same for all li, we drop it,
similarly to P (~f) above.

To obtain the conditional feature probability P (fj | li), we distinguish whether a
feature fj already appeared in conjunction with a label li. If so, then its probability
is the ratio of the number of times fj appeared when li was used to the number
of times that li was used. Otherwise, the probability is estimated to be a minimal
constant probability µ:

P (fj | li) =

{∑
~f ′∈F (li) 1~f ′ (fj)/ |F (li)| if ∃~f ′ ∈ F (li).fj ∈ ~f ′

µ otherwise

Here, 1A(x) denotes the indicator function that returns 1 if x ∈ A and 0 otherwise.

20 Michael Färber et al.

4.3 Implementations

The Machine Learning Connection Prover (MaLeCoP) was the first leanCoP-based
system to explore the feasibility of machine-learnt internal guidance (Urban et al.,
2011). MaLeCoP relies on an external machine learning framework (using by default
the SNoW system (Carlson et al., 1999)), providing machine learning algorithms
such as Naive Bayes and shallow neural networks based on perceptrons or winnow
cells. During proof search, MaLeCoP sends features of its current branch to the
framework, which orders the proof steps applicable in the current branch by their
expected utility. The usage of a general framework eases experiments with different
methods, but the prediction speed of MaLeCoP’s underlying advisor system together
with the communication overhead is several orders of magnitude lower than the raw
inference speed of leanCoP. This was to some extent countered by fast query caching
mechanisms and a number of strategies trading the machine-learnt advice for raw
speed, yet the real-time performance of the system remains relatively low.

This motivated the creation of the Fairly Efficient Machine Learning Connection
Prover (FEMaLeCoP), which improved speed by integrating a fast and optimised
Naive Bayes classifier as shown in subsection 4.2 into the prover (Kaliszyk and Urban,
2015a). Naive Bayes was chosen because learning data can be easily filtered for the
current problem, making the calculation of Naive Bayesian probabilities for a given
branch efficient for each applicable contrapositive. FEMaLeCoP efficiently calculates
the Bayesian probabilities of a given set of contrapositives by saving statistics directly
in the contrapositive database, see subsection 3.3. Performance is further improved
by updating branch features from the previous branch, instead of fully recalculating
them in every new branch.

4.4 Evaluation

The evaluation of Naive Bayes guidance (as well as the comparative evaluation of
other methods in the next section) involves collecting training data by running
leanCoP on a training dataset followed by running guided FEMaLeCoP both on
training data and on a testing set. Additionally, to maximize the amount of available
training data, we will split the dataset in such a way that problems that unmodified
leanCoP can solve will be in the training set and unsolved problems will be in the
testing set. We run both leanCoP and FEMaLeCoP on the bushy MPTP2078 dataset
with a timeout of 60 seconds, use nondefinitional clausification, conjecture-directed
search and restricted backtracking. Both leanCoP and FEMaLeCoP considered in
this evaluation are implemented in OCaml using continuation passing style and
array-based substitutions, see subsubsections 3.4.3 and 3.3.

The original leanCoP orders the input formula so that more promising (e.g. smaller)
clauses are tried earlier, see subsection 3.1. To evaluate the ability of FEMaLeCoP to
learn useful clause orders itself, we evaluate versions of leanCoP and FEMaLeCoP
that either order the clauses like the original leanCoP or reverse the original order of
clauses in the matrix. The latter reduces the number of proven problems compared
to the default clause order.

Our evaluation proceeds as follows: We first run leanCoP on all problems. This
divides our problems into a training set, namely the problems that leanCoP solves,
and a testing set, namely the problems that leanCoP does not solve. From the proofs

Machine Learning Guidance for Connection Tableaux 21

Table 5: FEMaLeCoP results, default clause order. Provers run with 60 seconds
timeout and restricted backtracking (+cut).

Prover Training Testing
∑ ⋃

leanCoP−def 643 0 643 701 (+9.0%)
FEMaLeCoP−def 607 (-5.6%) 58 665 (+3.4%)

leanCoP+def 577 0 577 627 (+8.7%)
FEMaLeCoP+def 542 (-6.1%) 50 592 (+2.6%)

Table 6: FEMaLeCoP results, reversed clause order. Provers run with 60 seconds
timeout and restricted backtracking (+cut).

Prover Training Testing
∑ ⋃

leanCoP−def 574 0 574 664 (+15.7%)
FEMaLeCoP−def 550 (-4.2%) 90 640 (+11.5%)

leanCoP+def 568 0 568 623 (+9.7%)
FEMaLeCoP+def 540 (-4.9%) 55 595 (+4.8%)

for the problems in the training set, we extract the information which contrapositive
contributed in which tableau branch. We combine this information for all proofs in a
format that allows efficient retrieval of learning data for given contrapositives. With
the training data generated from the leanCoP proofs, we run FEMaLeCoP on both
training and testing set.

The results of the evaluation with default and reversed clause order are shown in
Table 5 and Table 6, respectively. The

∑
column shows for every prover how many

problems it solved in total (i.e. the sum of training and testing problems solved by
the prover). The

⋃
column shows how many problems were solved by either the

underlying prover gathering data or the machine learning guided prover (i.e. the sum
of training problems solved by the unguided prover and testing problems solved by
the guided prover).

We detail the results of leanCoP and FEMaLeCoP without definitional clausifica-
tion and with the reversed clause order. In this setting, leanCoP proves 574 problems.
Running FEMaleCoP on this training set proves 550 problems, which is a loss of
4.2% compared to leanCoP. However, on the testing set, FEMaLeCoP proves 90
problems that were unsolved by leanCoP. Combining the problems from the training
and testing set, FEMaLeCoP proves 640 problems, which is 11.5% more problems
than solved by leanCoP, despite the fact that the inference rate of FEMaLeCoP
is about 40% below leanCoP. The union of leanCoP and FEMaLeCoP proves 664
problems, adding 90 problems (15.7%) to the problems solved by leanCoP.

In comparison, when using versions of leanCoP and FEMaLeCoP that use the
default clause order or definitional clausification (+def), the gain of proven problems
for FEMaLeCoP is lower.

In the next section, we will show another machine learning method and compare
its performance with the performance of Naive Bayesian guidance.

22 Michael Färber et al.

5 Monte Carlo Proof Search

Current automated theorem provers are still weak at finding more complicated proofs,
especially over large formal developments (Urban et al., 2010). The search typically
blows up after several seconds, making the chance of finding proofs in longer times
exponentially decreasing (Alama et al., 2012). This behaviour is reminiscent of poorly
guided search in games such as chess and Go. The number of all possible variants
there typically also grows exponentially, and intelligent guiding methods are needed
to focus on exploring the most promising moves and positions.

The guiding method that has recently very significantly improved automatic game
play is Monte Carlo Tree Search (MCTS), i.e. expanding the search tree based on its
(variously guided) random sampling (Browne et al., 2012). MCTS has been found to
produce state-of-the-art players for several games, most notably for the two-player
game Go (Silver et al., 2016), but also for single-player games such as SameGame
(Schadd et al., 2012) and the NP-hard Morpion Solitaire (Rosin, 2011).

Theorem proving can be seen as a game. For instance, it has been modelled as a
two-player game in the framework of game-theoretical semantics (Hintikka, 1982), but
it can also be seen as a combinatorial single-player game. As shown for example in
the AlphaGo system (Silver et al., 2016), machine learning can be used to train good
position evaluation heuristics even in very complicated domains that were previously
thought to be solely in the realm of “human intuition”. While “finishing the randomly
sampled game” – as used in the most straightforward MCTS for games – is not
always possible in ATP (it would mean finishing the proof), there is a chance of
learning good proof state evaluation heuristics that will guide MCTS for ATPs in a
similar way as e.g. in AlphaGo. One-step lookahead can help Vampire proof search
(Hoder et al., 2016), suggesting that MCTS, whose simulation phase can be seen as
multi-step lookahead, can effectively guide proof search. It therefore seems reasonable
to apply MCTS to the game of theorem proving.

In this section, we study MCTS methods that can guide the search in automated
theorem provers. We focus on connection tableaux calculi and the leanCoP prover as
introduced in subsection 3.3. For an intuition of the relationship between different
proof search strategies, see Figure 4: Iterative deepening considers all potential
proof trees of a certain depth before considering trees of higher depth. Restricted
backtracking uniformly discards a set of potential proof trees. MCTS allows for a more
fine-grained proof search, searching different regions of the space more profoundly
than others, based on heuristics. To our knowledge, our approach is the first to apply
MCTS to theorem proving.

We introduce MCTS in subsection 5.1 and then propose a set of heuristics
adapted to proof search to expand of a proof search tree using MCTS. We show an
implementation in subsection 5.6 and evaluate it in subsection 5.8.

5.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a method to search potentially infinite trees by
sampling random tree paths (called simulations) (Browne et al., 2012). The outcome
of simulations is used to estimate the quality of tree nodes, and MCTS steers search
towards nodes with higher quality estimates.

Machine Learning Guidance for Connection Tableaux 23

(a) Iterative deepening with-
out restricted backtracking.

(b) Iterative deepening with
restricted backtracking.

(c) Monte Carlo.

Fig. 4: The two main leanCoP strategies compared with Monte Carlo proof search.

Definition 3 (Tree) A tree is a tuple (N,n0,→), where N is a set of tree nodes,
n0 ∈ N is the root node, and → ∈ N × N is a cycle-free relation, i.e. there is no
n ∈ N such that n→+ n. We write that n′ is a child of n iff n→ n′, and we write
that n′ is a descendant of n iff n →+ n′. Every n ∈ N is the child of at most one
node in N .

We consider connection proof search as traversal of a tree that we define as follows.

Definition 4 (Connection Proof Search Tree) A connection proof search tree
for a word 〈C,M,Path〉 is a tree (N,n0,→), where N is the set of derivations, n0 is
a derivation consisting of the word 〈C,M,Path〉, and n→ n′ iff n′ can be obtained
from n by a single application of a calculus rule. If n→ n′ by an application of the
extension rule using the contrapositive c, then we write n ext(c)−−−−→ n′.

The search for a proof of the word 〈C,M,Path〉 then succeeds if we find a node
n ∈ N with n0 →∗ n such that n is a closed derivation, where (N,n0,→) is the
connection proof search tree for 〈C,M,Path〉.

Let ρ ∈ N→ R be a reward function that estimates the distance of an unclosed
derivation in the proof search tree from a closed derivation. Then we can use Monte
Carlo Tree Search to traverse the proof search tree, giving preference to regions that
yield higher rewards. For this, we first define Monte Carlo trees:

Definition 5 (Monte Carlo Tree) A Monte Carlo tree T for a tree (N,n0,→) is
a tuple (NT ,→T , ρT), where NT ⊆ N , →T ⊆→+, and ρT ∈ N → R is a mapping.
We write that n′ is a T -child of n iff n →T n′. The initial Monte Carlo tree T0 is
(NT0 ,→T0 , ρT0) with NT0 = {n0}, →T0 = ∅ and ρT0 (n) = 0 for all n.

A single iteration of Monte Carlo Tree Search takes a Monte Carlo tree T and
returns a new tree T ′ as follows:10

1. Selection: A node n ∈ NT with n0 →∗T n is chosen with a child selection policy,
see subsection 5.2.

10 Frequently, MCTS is described to have a backpropagation step that adds rewards to the
ancestors of the newly added nodes. We omit this step, adapting the child selection policy
instead.

24 Michael Färber et al.

2. Simulation: A child n1 of n is randomly chosen with child probability P (n1 | n)
to be the simulation root, see subsection 5.3. Every tree node is chosen at most
once to be a simulation root, to guarantee the exploration of the tree. From n1,
a sequence of random transitions n1 → · · · → ns is performed, where for every
i < s, ni+1 is randomly selected with child probability P (ni+1 | ni).

3. Expansion: A node ne from n1 → · · · → ns is selected with the expansion policy,
see subsection 5.5. The node ne is added as a child to n with reward ρ(ns) (see
subsection 5.4) to yield the new tree T ′:

NT ′ = NT ∪ {ne} →T ′ =→T ∪ {(n, ne)} ρT ′ = ρT {ne 7→ ρ(ns)}

In the next sections, we propose heuristics for the child selection policy, child
probability, reward, and expansion policy.

5.2 Child Selection Policy

UCT (Upper Confidence Bounds for Trees) is a frequently used child selection policy
for Monte Carlo Tree Search (Kocsis and Szepesvári, 2006). It uses visitsT (n), which
is the number of T -descendants of n, and ρT (n), which is the average T -descendant
reward of n.

visitsT (n) = |{n′ | n→+
T n
′}| ρT (n) =

∑
{ρT (n′) | n→∗T n′}

visitsT (n)

Given a node n, UCT ranks every T -child n′ of n with

uct(n, n′) = ρT (n′) + Cp

√
ln visitsT (n)
visitsT (n′)

Here, Cp is called the exploration constant, where small values of Cp prefer nodes
with higher average descendant reward and large values of Cp prefer nodes with fewer
visits. In the UCT formula, division by zero is expected to yield ∞, so if a node n
has unvisited children, one of them will be selected by UCT.

The UCT child selection policy csT (n) recursively traverses the Monte Carlo tree
T starting from the root n0. csT (n) chooses the T -child of n with maximal UCT
value and recurses unless n has no T -child, in which case n is returned:

csT (n) =

csT
(

arg max
n′∈{n′|n→Tn′}

uct(n, n′)

)
if ∃n′. n→T n

′

n otherwise

5.3 Child Probability

The child probability P (n′ | n) determines the likelihood of choosing a child node n′ of
n in a simulation. We show three different methods to calculate the child probability.

– The baseline probability assigns equal probability to all children, i.e. P (n′ | n) ∝ 1.

Machine Learning Guidance for Connection Tableaux 25

– The open branches probability steers proof search towards derivations with fewer
open branches, by assigning to n′ a probability inversely proportional to the
number of open branches in n′. Therefore, P (n′ | n) ∝ 1/ (1 + |bo(n′)|), where
bo(n) returns the open branches in n.

– The Naive Bayes probability attributes to n′ a probability depending on the
calculus rule applied to obtain n′ from n. In case the extension rule was not
used, the node obtains a constant probability. If the extension rule was used, the
formula nb introduced in subsection 4.2 is used, requiring contrapositive statistics
from previous proofs. However, as nb does not return probabilities, we use it to
rank contrapositives by the number of contrapositives with larger values of nb:

ranknb(n, c) =
∣∣∣∣{c′ | n ext(c′)−−−−→ n′,nb(c′, ~f(n)) ≥ nb(c, ~f(n))

}∣∣∣∣ ,
where ~f(n) denotes the features of the derivation n. Then, we assign to nodes as
probability the inverse of the Naive Bayes rank:

P (n′ | n) ∝

{
1/ ranknb(n, c) if n ext(c)−−−−→ n′

1 otherwise

5.4 Reward

The reward heuristic estimates the likelihood of a given derivation to be closable. In
contrast, most prover heuristics (such as child probability) only compare the quality
of children of the same node. We use our reward heuristics to evaluate the last node
n of a simulation.

Several heuristics in this section require a normalisation function, for which we use
a strictly increasing function norm ∈ [0,∞)→ [0, 1) that fulfils limx→∞ norm(x) = 1
and norm(0) = 0. For example, norm(x) = 1− (x+ 1)−1.

– The branch ratio reward determines the reward to be the ratio of the number of
closed branches and the total number of branches, i.e. ρ(n) = |bc(n)|/|b(n)|.

– The branch weight reward is based on the idea that many open branches with
large literals are indicators of a bad proof attempt. Here, the size |l| of a literal
is measured by the number of symbol occurrences in l. Furthermore, the closer
to the derivation root a literal appears, the more characteristic we consider it to
be for the derivation. Therefore, the reward is the average of the inverse size of
the branch leaves, where every leaf is weighted with the normalised depth of its
branch.

ρ(n) = 1
|bo(n)|

∑
b∈bo(n)

norm(depth(b))
| leaf(b)|

– The machine-learnt closability reward assumes that the success ratio of closing
a branch in previous derivations can be used to estimate the probability that a
branch can be closed in the current derivation. This needs the information about
attempted branches in previous derivations, and which of these attempts were
successful. We say that a literal l stemming from a clause c is attempted to be
closed during proof search when l lies on some branch. The attempt is successful iff
proof search manages to close all branches going through l. Given such data from

26 Michael Färber et al.

previous proof searches, let p(l) and n(l) denote the number of attempts to close
l that were successful and unsuccessful, respectively. We define the unclosability
of a literal l as n(l)

p(l)+n(l) . However, the less data we have about a literal, the
less meaningful our statistics will be. To account for this, we introduce weighted
unclosability: We assume that a literal that never appeared in previous proof
searches is most likely closable, i.e. its weighted unclosability is 0. The more often
a literal was attempted to be closed, the more its weighted unclosability should
converge towards its (basic) unclosability. Therefore, we model the probability of
l to be closable as

P (l closable) = 1− norm(p(l) + n(l)) n(l)
p(l) + n(l)

Finally, the closability of a derivation is the mean closability of all leafs of open
branches of the derivation, i.e. the final reward formula is

ρ(n) =
∑

b∈bo(n)

P (leaf(b) closable)
|bo(n)|

To measure the efficiency of a reward heuristic, we introduce discrimination:
Assume that an MCTS iteration of the Monte Carlo tree T starts a simulation from
the node np and finds a proof. Then the discrimination of T is the ratio of the average
reward on the Monte Carlo tree branch from the root node n0 to np and the average
reward of all Monte Carlo tree nodes. Formally, let the average reward of a set of
nodes N be

ρT (N) =
∑
{ρT (n) | n ∈ N}

|N |

Then, the discrimination of T is

ρT ({n | n0 →∗T n, n→∗T np})
ρT ({n | n0 →∗T n})

5.5 Expansion Policy

The expansion policy determines which node ne of a simulation n1 → · · · → ns is
added to the Monte Carlo tree. We implement two different expansion policies:

– The default expansion policy adds n1, i.e. the simulation root, to the MC tree.
– The minimal expansion policy picks ne to be the smallest of the simulation nodes

with respect to a given norm | · |, such that for all i, |ne| ≤ |ni|. If multiple ne are
admissible, the one with the smallest index e is picked. We consider two norms
on nodes:
1. The first norm measures the number of open branches.
2. The second norm measures the sum of depths of open branches.

The minimal expansion policy is similar to restricted backtracking in the sense
that it restricts proof search to be resumed only from certain states, thus resulting in
an incomplete search.

Machine Learning Guidance for Connection Tableaux 27

Listing 4: Monte Carlo Proof Search as advisor.

1 prove [] path lim sub = [sub]
2 prove (lit : cla) path lim sub =
3 let
4 mc = initTree lit path sub & mcps & take (1 + maxIterations)
5 proofs1 = mapMaybe getProof mc
6 proofs2 = last mc & root & children & sortOn avgReward & concatMap
7 (\ child -> case lastStep child of
8 Reduction sub1 -> [sub1]
9 Extension (sub1, cla1) ->

10 if lim <= 0 then []
11 else prove cla1 (lit : path) (lim - 1) sub1)
12 in concatMap (prove cla path lim) (proofs1 ++ proofs2)

5.6 Implementation

We implemented Monte Carlo proof search (MCPS) on top of the functional implemen-
tation of leanCoP using lazy lists, see subsubsection 3.4.2.11 In our implementation,
leanCoP provides the search tree and MCTS chooses which regions of the tree to
search. Unlike for the traditional leanCoP, the depth of the search tree is not limited.
To guarantee nonetheless that simulations terminate, simulations are stopped after a
fixed number of simulation steps smax.

While it is possible to run MCPS from the root node until a proof is found,
we found it to perform better when it serves as advisor for leanCoP. We show this
in Listing 4, assuming for a simpler presentation that the default expansion policy
from subsection 5.5 is used: In line 4, initTree L Path σ creates an initial Monte
Carlo tree for a connection proof search tree for the word 〈{L},M, Path〉 under the
substitution σ. Starting from this initial Monte Carlo tree T , mcps T constructs a
(potentially infinite) lazy list of Monte Carlo iterations, with T as its head, where an
iteration consists of a Monte Carlo tree and possibly a proof discovered during the
simulation performed in the iteration. Of this list, we consider T and the following
maxIterations elements: When maxIterations is set to 0, only T is considered and
thus proof search behaves like leanCoP. When maxIterations is set to ∞, the whole
proof search is performed in the MCPS part. As MCPS is performed lazily, MCPS
may be performed for less than maxIterations iterations when it discovers some
proof contributing to the final closed derivation. Here, the lazy list characterisation
introduced in subsubsection 3.4.2 turns out to permit a very concise implementation
as well as an easy integration of techniques such as restricted backtracking. As soon
as all proofs discovered during MCPS were considered (line 5), the tree T of the
final Monte Carlo iteration last mc is obtained and the children of the root of T
are sorted by decreasing average T -descendant reward ρT (line 6). Finally, the last
applied proof step of each child is processed like in the lazy list implementation (lines
7–11).

The array substitution technique from subsection 3.3 requires that the proof
search backtracks only to states whose substitution is a subset of the current state’s
substitution. However, because this requirement is not fulfilled for MCPS, we use
association lists for substitutions.

11 The source code is available at http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

28 Michael Färber et al.

Table 7: Comparison of Monte Carlo heuristics. Iterations, simulation steps and
discrimination ratio are averages on the 196 problems solved by all configurations.

Configuration Iterations Sim. steps Discr. Solved

Base 116.46 1389.82 1.37 332
Uniform probability 949.62 17539.59 1.31 237
NB probability 528.39 8014.03 1.35 248
Random reward 104.88 1167.98 1.19 364
Branch weight reward 108.13 1268.88 1.12 334
ML closability reward 108.52 1151.61 2.30 367
Default exp. pol. 371.81 4793.58 1.38 328
Minimal exp. pol. 2 224.72 2769.12 1.40 348

5.7 Parameter Tuning

To obtain suitable parameters for our heuristics, we evaluate them on the bushy
MPTP2078 problems, with definitional clausification and a timeout of 10 seconds
for each problem. Before evaluation, we collect training data for machine learning
heuristics by running leanCoP with a strategy schedule on all bushy problems with a
timeout of 60 seconds. This solves 600 problems.

The base configuration of monteCoP uses the open branches probability (see
subsection 5.3), the branch ratio reward (see subsection 5.4), and the minimal
expansion policy 1 (see subsection 5.5), where the maximal simulation depth smax =
50, the exploration constant Cp = 1, and the maximal number of MCTS iterations
maxIterations = ∞. For any heuristic h not used in the base configuration, we
replace the default heuristic with h and evaluate the resulting configuration. The
results are shown in Table 7: The heuristics that most improve the base configuration
are the machine-learnt closability reward and the minimal expansion policy 2.

We explore a range of values for several numeric parameters, for which we
show results in Figure 5: The maximal number of MCTS iterations maxIterations
performs best between 20 and 40, see Figure 5a: Below 20, MCTS cannot provide any
meaningful quality estimates, and above 40, the quality estimates do not significantly
improve any more, while costing computational resources. The exploration constant
Cp ≈ 0.75 gives best results, where the machine-learnt closability reward achieves
a local optimum, see Figure 5b: At such an optimum, exploration and exploitation
combine each other best, therefore the existence of such an optimum is a sanity check
for reward heuristics (which the branch ratio reward does not pass). The maximal
simulation depth smax ≈ 20 seems to perform best, see Figure 5c. Above this value,
the number of solved problems decreases, since the number of actually performed
simulation steps decreases, as shown in Figure 5d. This might be explained by the
fact that at higher simulation depths, the computational effort to calculate the set
of possible steps increases, for example because the substitution contains more and
larger elements.

We adapt the base configuration to use the best heuristics from Table 7 and the
best values for parameters discussed in Figure 5, yielding smax = 20, Cp = 0.75, and
maxIterations = 27. We use this improved configuration as basis for the following
evaluation.

Machine Learning Guidance for Connection Tableaux 29

0 20 40 60 80 100 120 140

450

460

470

480

490

500

maxIterations

P
ro
bl
em

s
so
lv
ed

(a) Maximal number of MCTS iterations.

0 1 2 3 4 5

200

300

400

Cp

P
ro
bl
em

s
so
lv
ed

Machine-learnt closability reward
Branch ratio reward

(b) Exploration.

0 20 40 60 80 100 120 140
100

150

200

250

300

350

smax

P
ro
bl
em

s
so
lv
ed

(c) Maximal simulation depth.

0 20 40 60 80 100 120 140

0.6

0.8

1

1.2

1.4

·105

smax

Si
m
ul
at
io
n
st
ep
s

(d) Simulation steps / Maximal simulation
depth.

Fig. 5: Parameter influence.

5.8 Evaluation

We now compare the performance of FEMaLeCoP with default clause order and the
improved configuration of monteCoP obtained in subsection 5.7. In the following,
leanCoP/m and leanCoP/F refer to the leanCoP versions used to generate training
data for monteCoP and FEMaLeCoP, respectively. We use the same evaluation
methodology as in subsection 4.4: First, we run leanCoP/m and leanCoP/F on all
problems for 60 seconds each, collecting training data. Next, to maximize the amount
of available training data, we split the dataset for both leanCoP/m and leanCoP/F in
such a way that problems that the respective prover can solve will be in its training
set and unsolved problems will be in its testing set. Then, we run FEMaLeCoP and
monteCoP on the testing sets corresponding to their respective underlying leanCoP
versions, again for 60 seconds each.

With a timeout of 60 seconds, monteCoP solves 601 problems, compared to 563
solved by the best single leanCoP/m strategy, see Table 8. In comparison, FEMaLeCoP
solves 592 problems, compared to 577 solved by the best single leanCoP/F strategy,
see Table 5.

Figure 6 shows for any moment in time the total number of both training and
testing problems solved up to that point. To this end, the testing data graph offsets

30 Michael Färber et al.

Table 8: Final evaluation results. Provers run with 60 seconds timeout, definitional
clausification (+def), and restricted backtracking (+cut). The

∑
and

⋃
columns are

explained in subsection 4.4.

Prover Training Testing
∑ ⋃

leanCoP/m 563 0 563 653 (+16.0%)
monteCoP 511 (-9.2%) 90 601 (+6.7%)

leanCoP/F 577 0 577 627 (+8.7%)
FEMaLeCoP+def 542 (-6.1%) 50 592 (+2.6%)

0 20 40 60
300

400

500

600

Time [s]

P
ro
bl
em

s
so
lv
ed

Training

monteCoP
FEMaLeCoP
leanCoP/m
leanCoP/F

0 20 40 60
Time [s]

Testing

monteCoP
FEMaLeCoP

Fig. 6: Comparison of monteCoP and FEMaLeCoP. Provers run with definitional
clausification (+def) and restricted backtracking (+cut)

the curves for monteCoP and FEMaLeCoP by the number of problems solved during
training by leanCoP/m and leanCoP/F, respectively. Furthermore, we show on the
training graph the number of training problems solved by monteCoP and FEMaLeCoP
using training data from leanCoP/m and leanCoP/F.

On Figure 6, we can see that despite monteCoP’s poor performance on the training
set and despite the lower amount of problems solved by leanCoP/m compared to
leanCoP/F, monteCoP is quickly taking the lead on the testing set compared to
FEMaLeCoP. In total, the combination of leanCoP/F and FEMaLeCoP proves 627
problems, whereas leanCoP/m and monteCoP prove 653 problems. That means that
in the evaluated scenario, the combination of leanCoP/m and monteCoP is more
effective than leanCoP/F and FEMaLeCoP.

6 Related Work

A number of related works has already been discussed in previous sections. In
particular, in section 2, we introduced the connection calculus (Bibel, 1991) as
a variant of tableaux (Letz and Stenz, 2001), we discussed its implementation in
the leanCoP theorem prover (Otten and Bibel, 2003), a number of improvements

Machine Learning Guidance for Connection Tableaux 31

introduced in the second version of leanCoP (Otten, 2008) including restricted
backtracking (Otten, 2010), and the nonclausal variant of the connection calculus
(Otten, 2011) together with its implementation (Otten, 2016).

The compact Prolog implementation of theorem provers following the lean archi-
tecture made it attractive for many experiments both with the calculus and with
the implementation. The intuitionistic version of leanCoP (Otten, 2005) became
the state-of-art prover for first-order problems in intuitionistic logic (Raths et al.,
2007). Connections have also been considered for first-order modal logic in mleanCoP
(Otten, 2014), for higher-order logic (Andrews, 1989) and for linear logic (Galmiche,
2000). Various implementation modifications can be performed very elegantly, such as
search strategies, scheduling, randomization of the order of proof search steps (Raths
and Otten, 2008), and internal guidance (Urban et al., 2011; Kaliszyk and Urban,
2015a).

A number of early learning and data based approaches to guide automated
theorem provers has been surveyed in (Denzinger et al., 1999). The Prover9 hints
method (Veroff, 1996) allows the user to specify (an often large set of) clauses to treat
in a special way. A similarly working watch list has been later integrated in E, along
with other learning mechanisms (Schulz, 2001). Using machine learning for internal
guidance is historically motivated by the success of the external guidance methods
used mainly for premise selection outside of the core ATP systems (Blanchette et al.,
2016a; Urban et al., 2008; Kaliszyk and Urban, 2014). Guiding the actual proof search
of ATPs using machine learning has been considered in the integration of a Naive
Bayesian classifier to select next proof actions in Satallax (Färber and Brown, 2016),
as well as in Enigma (Jakubův and Urban, 2017) where the clause selection in E uses
a tree-based n-gram approach to approximate similarity to the learned proofs using a
support vector machine classifier. Holophrasm (Whalen, 2016) introduces a theorem
prover architecture using GRU neural networks to guide the proof search of a tableaux
style proof process of MetaMath. TensorFlow neural network guidance was integrated
in E (Loos et al., 2017), showing that with batching and hybrid heuristics, it can
solve a number of problems other strategies cannot solve. Finally, various reasons
as to why the connection calculus is well suited for machine learning techniques,
especially deep learning, are considered in (Bibel, 2017).

The main use of machine learning in automated and interactive theorem provers
today is to reduce original problems before the actual proof search. Machine learning
based methods (Kühlwein et al., 2013; Blanchette et al., 2016b) improve on and
complement the various ATP heuristics (Hoder and Voronkov, 2011) and ITP heuris-
tics (Meng and Paulson, 2009). The problem of selecting the most useful lemmas for
the given proof, referred to as “premise selection” or “relevance filtering” (Alama
et al., 2014) nowadays uses syntactic similarity approaches, simple Naive Bayes and
k-NN based classifiers, regression and kernel based methods (Kühlwein et al., 2012),
as well as deep neural networks (Irving et al., 2016). This has become especially
important in the “large theory bench” division added to the CADE Automated
Systems Competition in 2008 (Sutcliffe, 2009a), with systems such as MaLARea
(Urban et al., 2008) and ET (Kaliszyk et al., 2015c) achieving notable results.

32 Michael Färber et al.

7 Conclusion and Future work

We have presented our framework for integrating machine learning in connection
tableaux. First, we presented translations to functional programming languages,
exploring possibilities to increase the speed of proof search while keeping the im-
plementation as simple as possible. We showed that the number of solved problems
can be increased by up to 58.8%, on one dataset beating even E in automatic mode.
Then, we discussed machine learning integration in leanCoP via context-sensitive
clause ordering and Monte Carlo Tree Search, showing that both these techniques can
increase the number of solved problems, despite fewer inferences being performed.

The performed machine learning experiments are promising enough to justify
the enhancement of Monte Carlo Proof Search with stronger heuristics, such as
neural networks. While we applied Monte Carlo Tree Search to theorem proving as a
single-player game, it could also be used to treat theorem proving as a two-player
game.

The combination of several tools that are small, simple and comprehensible can
be more effective than a large, monolithic tool. While the resulting connection provers
cannot yet outperform larger systems like Vampire (Kovács and Voronkov, 2013)
and E (Schulz, 2013), we hope that the insight gained by experiments performed in
connection provers might be used in their complex counterparts. Connection provers
might be candidates for the core of future automated reasoning tools and artificial
intelligence experiments.

Acknowledgements We thank the reviewers of CPP, LPAR, CADE, and JAR for their
valuable comments. This work has been supported by a doctoral scholarship of the University
of Innsbruck, the European Research Council (ERC) grants no. 649043 AI4REASON and no.
714034 SMART, the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466, and
the European Regional Development Fund.

References

Alama, Jesse, Daniel Kühlwein, and Josef Urban. 2012. Automated and human proofs
in general mathematics: An initial comparison. In LPAR-18, eds. Nikolaj Bjørner
and Andrei Voronkov. Vol. 7180 of LNCS, 37–45. Springer. doi:10.1007/978-3-642-
28717-6_6. ISBN 978-3-642-28716-9.

Alama, Jesse, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban.
2014. Premise selection for mathematics by corpus analysis and kernel methods. J.
Autom. Reasoning 52 (2): 191–213. doi:10.1007/s10817-013-9286-5.

Andrews, Peter B. 1989. On connections and higher-order logic. J. Autom. Reasoning
5 (3): 257–291. doi:10.1007/BF00248320.

Armando, Alessandro, Peter Baumgartner, and Gilles Dowek, eds. 2008. IJCAR. Vol.
5195 of LNCS. Springer. doi:10.1007/978-3-540-71070-7. ISBN 978-3-540-71069-1.

Beckert, Bernhard, and Joachim Posegga. 1995. leanTAP: Lean tableau-based deduc-
tion. J. Autom. Reasoning 15 (3): 339–358. doi:10.1007/BF00881804.

Beckert, Bernhard, Reiner Hähnle, and Peter H. Schmitt. 1993. The even more
liberalized δ-rule in free variable semantic tableaux. In Kurt gödel colloquium,
eds. Georg Gottlob, Alexander Leitsch, and Daniele Mundici. Vol. 713 of LNCS,
108–119. Springer. doi:10.1007/BFb0022559. ISBN 3-540-57184-1.

Machine Learning Guidance for Connection Tableaux 33

Berghofer, Stefan, Tobias Nipkow, Christian Urban, and Makarius Wenzel, eds.
2009. TPHOLs. Vol. 5674 of LNCS. Springer. doi:10.1007/978-3-642-03359-9. ISBN
978-3-642-03358-2.

Bertot, Yves. 2008. A short presentation of Coq. In TPHOLs, eds. Otmane Aït
Mohamed, César A. Muñoz, and Sofiène Tahar. Vol. 5170 of LNCS, 12–16. Springer.
doi:10.1007/978-3-540-71067-7_3. ISBN 978-3-540-71065-3.

Bibel, Wolfgang. 1983. Matings in matrices. Commun. ACM 26 (11): 844–852.
doi:10.1145/182.183.

Bibel, Wolfgang. 1987. Automated theorem proving, 2nd edn. Artificial intelligence.
Vieweg. http://www.worldcat.org/oclc/16641802.

Bibel, Wolfgang. 1991. Perspectives on automated deduction. In Automated reasoning:
Essays in honor of Woody Bledsoe, ed. Robert S. Boyer. Automated reasoning series,
77–104. Kluwer Academic Publishers. ISBN 0-7923-1409-3.

Bibel, Wolfgang. 2017. A vision for automated deduction rooted in the connection
method. In TABLEAUX, eds. Renate A. Schmidt and Cláudia Nalon. Vol. 10501 of
LNCS, 3–21. Springer. doi:10.1007/978-3-319-66902-1_1. ISBN 978-3-319-66901-4.

Biere, Armin, Ioan Dragan, Laura Kovács, and Andrei Voronkov. 2014. Experimenting
with SAT solvers in Vampire. In MICAI 2014. part I, eds. Alexander F. Gelbukh,
Félix Castro q. Espinoza, and Sofía N. Galicia q. Haro. Vol. 8856 of LNCS, 431–442.
Springer. doi:10.1007/978-3-319-13647-9_39. ISBN 978-3-319-13646-2.

Blanchette, Jasmin Christian, Cezary Kaliszyk, Lawrence C. Paulson, and Josef
Urban. 2016a. Hammering towards QED. J. Formalized Reasoning 9 (1): 101–148.
doi:10.6092/issn.1972-5787/4593.

Blanchette, Jasmin Christian, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein,
and Josef Urban. 2016b. A learning-based fact selector for Isabelle/HOL. J. Autom.
Reasoning 57 (3): 219–244. doi:10.1007/s10817-016-9362-8.

Bove, Ana, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda - A functional
language with dependent types. In TPHOLs, eds. Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel. Vol. 5674 of LNCS, 73–78. Springer.
doi:10.1007/978-3-642-03359-9_6. ISBN 978-3-642-03358-2.

Browne, Cameron, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intellig. and AI in Games 4 (1): 1–43.
doi:10.1109/TCIAIG.2012.2186810.

Brünnler, Kai, and George Metcalfe, eds. 2011. TABLEAUX. Vol. 6793 of LNCS.
Springer. doi:10.1007/978-3-642-22119-4. ISBN 978-3-642-22118-7.

Carlson, Andrew J., Chad M. Cumby, Jeff L. Rosen, and Dan Roth. 1999. SNoW user
guide, Technical Report UIUCDCS-R-99-2101, University of Illinois at Urbana-
Champaign. http://cogcomp.org/papers/CCRR99.pdf.

Denzinger, Jörg, Matthias Fuchs, Christoph Goller, and Stephan Schulz. 1999. Learn-
ing from Previous Proof Experience, Technical Report AR99-4, Institut für Infor-
matik, Technische Universität München.

Färber, Michael, and Chad E. Brown. 2016. Internal guidance for Satallax. In IJCAR,
eds. Nicola Olivetti and Ashish Tiwari. Vol. 9706 of LNCS, 349–361. Springer.
doi:10.1007/978-3-319-40229-1_24. ISBN 978-3-319-40228-4.

Färber, Michael, Cezary Kaliszyk, and Josef Urban. 2017. Monte Carlo tableau
proof search. In CADE-26, ed. Leonardo de Moura. Vol. 10395 of LNCS, 563–579.
Springer. doi:10.1007/978-3-319-63046-5_34. ISBN 978-3-319-63045-8.

http://cogcomp.org/papers/CCRR99.pdf

34 Michael Färber et al.

Galmiche, Didier. 2000. Connection methods in linear logic and proof nets construction.
Theor. Comput. Sci. 232 (1-2): 231–272. doi:10.1016/S0304-3975(99)00176-0.

Giese, Martin, and Wolfgang Ahrendt. 1999. Hilbert’s epsilon-terms in automated
theorem proving. In TABLEAUX, ed. Neil V. Murray. Vol. 1617 of LNCS, 171–185.
Springer. doi:10.1007/3-540-48754-9_17. ISBN 3-540-66086-0.

Greenbaum, Steven. 1986. Input transformations and resolution implementation
techniques for theorem-proving in first-order logic. PhD diss, University of Illinois
at Urbana-Champaign.

Hähnle, Reiner. 2001. Tableaux and related methods. In Handbook of automated
reasoning (in 2 volumes), eds. John Alan Robinson and Andrei Voronkov, 100–178.
Elsevier and MIT Press. ISBN 0-444-50813-9.

Hales, Thomas C., Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison,
Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason
Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef
Urban, Ky Khac Vu, and Roland Zumkeller. 2017. A formal proof of the Kepler
conjecture. Forum of Mathematics, Pi 5. doi:10.1017/fmp.2017.1.

Harrison, John. 2009. HOL Light: An overview. In TPHOLs, eds. Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel. Vol. 5674 of LNCS, 60–66.
Springer. doi:10.1007/978-3-642-03359-9_4. ISBN 978-3-642-03358-2.

Hilbert, David, and Paul Bernays. 1939. Grundlagen der Mathematik. II. Vol. 50 of
Die Grundlehren der mathematischen Wissenschaften. Springer.

Hintikka, Jaakko. 1982. Game-theoretical semantics: insights and prospects. Notre
Dame Journal of Formal Logic 23 (2): 219–241. doi:10.1305/ndjfl/1093883627.

Hoder, Kryštof, and Andrei Voronkov. 2011. Sine qua non for large theory reasoning.
In CADE-23, eds. Nikolaj Bjørner and Viorica Sofronie q. Stokkermans. Vol. 6803
of LNCS, 299–314. Springer. doi:10.1007/978-3-642-22438-6_23. ISBN 978-3-642-
22437-9.

Hoder, Kryštof, Giles Reger, Martin Suda, and Andrei Voronkov. 2016. Selecting the
selection. In IJCAR, eds. Nicola Olivetti and Ashish Tiwari. Vol. 9706 of LNCS,
313–329. Springer. doi:10.1007/978-3-319-40229-1_22. ISBN 978-3-319-40228-4.

Hurd, Joe. 2003. First-order proof tactics in higher-order logic theorem provers. In
Design and application of strategies/tactics in higher order logics (STRATA), eds.
Myla Archer, Ben Di Vito, and César Muñoz. NASA technical reports, 56–68.
http://www.gilith.com/research/papers.

Irving, Geoffrey, Christian Szegedy, Alexander A. Alemi, Niklas Eén, François Chollet,
and Josef Urban. 2016. DeepMath - deep sequence models for premise selection. In
NIPS, eds. Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, 2235–2243. http://papers.nips.cc/paper/6280-deepmath-deep-
sequence-models-for-premise-selection.

Jakubův, Jan, and Josef Urban. 2017. ENIGMA: efficient learning-based inference
guiding machine. In CICM, eds. Herman Geuvers, Matthew England, Osman
Hasan, Florian Rabe, and Olaf Teschke. Vol. 10383 of LNCS, 292–302. Springer.
doi:10.1007/978-3-319-62075-6_20. ISBN 978-3-319-62074-9.

Jones, Karen Spärck. 1973. Index term weighting. Information Storage and Retrieval
9 (11): 619–633. doi:10.1016/0020-0271(73)90043-0.

Kaliszyk, Cezary, and Josef Urban. 2014. Learning-assisted automated reasoning with
Flyspeck. J. Autom. Reasoning 53 (2): 173–213. doi:10.1007/s10817-014-9303-3.

Kaliszyk, Cezary, and Josef Urban. 2015a. FEMaLeCoP: Fairly efficient machine

Machine Learning Guidance for Connection Tableaux 35

learning connection prover. In LPAR-20, eds. Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov. Vol. 9450 of LNCS, 88–96. Springer.
doi:10.1007/978-3-662-48899-7_7. ISBN 978-3-662-48898-0.

Kaliszyk, Cezary, and Josef Urban. 2015b. HOL(y)Hammer: Online ATP service for
HOL Light. Mathematics in Computer Science 9 (1): 5–22. doi:10.1007/s11786-014-
0182-0.

Kaliszyk, Cezary, and Josef Urban. 2015c. MizAR 40 for Mizar 40. J. Autom. Rea-
soning 55 (3): 245–256. doi:10.1007/s10817-015-9330-8.

Kaliszyk, Cezary, Josef Urban, and Jiří Vyskočil. 2015a. Certified connection tableaux
proofs for HOL Light and TPTP. In CPP, eds. Xavier Leroy and Alwen Tiu, 59–66.
ACM. doi:10.1145/2676724.2693176. ISBN 978-1-4503-3296-5.

Kaliszyk, Cezary, Josef Urban, and Jiří Vyskočil. 2015b. Efficient semantic fea-
tures for automated reasoning over large theories. In IJCAI, eds. Qiang Yang
and Michael Wooldridge, 3084–3090. AAAI Press. ISBN 978-1-57735-738-4.
http://ijcai.org/Abstract/15/435.

Kaliszyk, Cezary, Stephan Schulz, Josef Urban, and Jiří Vyskočil. 2015c. System
description: E.T. 0.1. In CADE-25, eds. Amy P. Felty and Aart Middeldorp.
Vol. 9195 of LNCS, 389–398. Springer. doi:10.1007/978-3-319-21401-6_27. ISBN
978-3-319-21400-9.

Kocsis, Levente, and Csaba Szepesvári. 2006. Bandit based Monte-Carlo planning.
In ECML, eds. Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou. Vol.
4212 of LNCS, 282–293. Springer. doi:10.1007/11871842_29. ISBN 3-540-45375-X.

Kovács, Laura, and Andrei Voronkov. 2013. First-order theorem proving and Vampire.
In CAV, eds. Natasha Sharygina and Helmut Veith. Vol. 8044 of LNCS, 1–35.
Springer. doi:10.1007/978-3-642-39799-8_1. ISBN 978-3-642-39798-1.

Kühlwein, Daniel, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom
Heskes. 2012. Overview and evaluation of premise selection techniques for large
theory mathematics. In IJCAR, eds. Bernhard Gramlich, Dale Miller, and Uli
Sattler. Vol. 7364 of LNCS, 378–392. Springer. doi:10.1007/978-3-642-31365-3_30.
ISBN 978-3-642-31364-6.

Kühlwein, Daniel, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban.
2013. MaSh: Machine learning for Sledgehammer. In ITP, eds. Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie. Vol. 7998 of LNCS, 35–50. Springer.
doi:10.1007/978-3-642-39634-2_6.

Letz, Reinhold, and Gernot Stenz. 2001. Model elimination and connection tableau
procedures. In Handbook of automated reasoning (in 2 volumes), eds. John Alan
Robinson and Andrei Voronkov, 2015–2114. Elsevier and MIT Press. ISBN 0-444-
50813-9.

Letz, Reinhold, Johann Schumann, Stefan Bayerl, and Wolfgang Bibel. 1992.
SETHEO: A high-performance theorem prover. J. Autom. Reasoning 8 (2): 183–212.
doi:10.1007/BF00244282.

Loos, Sarah M., Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
2017. Deep network guided proof search. In LPAR-21, eds. Thomas Eiter
and David Sands. Vol. 46 of Epic series in computing, 85–105. EasyChair.
http://www.easychair.org/publications/paper/340345.

Loveland, Donald W. 1968. Mechanical theorem-proving by model elimination. J.
ACM 15 (2): 236–251. doi:10.1145/321450.321456.

Meng, Jia, and Lawrence C. Paulson. 2009. Lightweight relevance filtering
for machine-generated resolution problems. J. Applied Logic 7 (1): 41–57.

36 Michael Färber et al.

doi:10.1016/j.jal.2007.07.004.
Mohamed, Otmane Aït, César A. Muñoz, and Sofiène Tahar, eds. 2008. TPHOLs. Vol.

5170 of LNCS. Springer. doi:10.1007/978-3-540-71067-7. ISBN 978-3-540-71065-3.
Nonnengart, Andreas. 1996. Strong skolemization, Research Report MPI-I-96-2-010,

Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany.
Olivetti, Nicola, and Ashish Tiwari, eds. 2016. IJCAR. Vol. 9706 of LNCS. Springer.
doi:10.1007/978-3-319-40229-1. ISBN 978-3-319-40228-4.

Otten, Jens. 2005. Clausal connection-based theorem proving in intuitionistic first-
order logic. In TABLEAUX, ed. Bernhard Beckert. Vol. 3702 of LNCS, 245–261.
Springer. doi:10.1007/11554554_19. ISBN 3-540-28931-3.

Otten, Jens. 2008. leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem
proving in classical and intuitionistic logic (system descriptions). In IJCAR, eds.
Alessandro Armando, Peter Baumgartner, and Gilles Dowek. Vol. 5195 of LNCS,
283–291. Springer. doi:10.1007/978-3-540-71070-7_23. ISBN 978-3-540-71069-1.

Otten, Jens. 2010. Restricting backtracking in connection calculi. AI Commun. 23
(2-3): 159–182. doi:10.3233/AIC-2010-0464.

Otten, Jens. 2011. A non-clausal connection calculus. In TABLEAUX, eds.
Kai Brünnler and George Metcalfe. Vol. 6793 of LNCS, 226–241. Springer.
doi:10.1007/978-3-642-22119-4_18. ISBN 978-3-642-22118-7.

Otten, Jens. 2014. Mleancop: A connection prover for first-order modal logic. In
IJCAR, eds. Stéphane Demri, Deepak Kapur, and Christoph Weidenbach. Vol.
8562 of LNCS, 269–276. Springer. doi:10.1007/978-3-319-08587-6_20. ISBN 978-3-
319-08586-9.

Otten, Jens. 2016. nanoCoP: A non-clausal connection prover. In IJCAR, eds. Nicola
Olivetti and Ashish Tiwari. Vol. 9706 of LNCS, 302–312. Springer. doi:10.1007/978-
3-319-40229-1_21. ISBN 978-3-319-40228-4.

Otten, Jens, and Wolfgang Bibel. 2003. leanCoP: lean connection-based theorem
proving. J. Symb. Comput. 36 (1-2): 139–161. doi:10.1016/S0747-7171(03)00037-3.

Plaisted, David A., and Steven Greenbaum. 1986. A structure-preserving clause form
translation. J. Symb. Comput. 2 (3): 293–304. doi:10.1016/S0747-7171(86)80028-1.

Plotkin, Gordon D. 1975. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci. 1 (2): 125–159. doi:10.1016/0304-3975(75)90017-1.

Ramakrishnan, I. V., R. C. Sekar, and Andrei Voronkov. 2001. Term indexing. In
Handbook of automated reasoning (in 2 volumes), eds. John Alan Robinson and
Andrei Voronkov, 1853–1964. Elsevier and MIT Press. ISBN 0-444-50813-9.

Raths, Thomas, and Jens Otten. 2008. randoCoP: Randomizing the proof search
order in the connection calculus. In PAAR, eds. Boris Konev, Renate A. Schmidt,
and Stephan Schulz. Vol. 373 of CEUR workshop proceedings. CEUR-WS.org.
http://ceur-ws.org/Vol-373/paper-08.pdf.

Raths, Thomas, Jens Otten, and Christoph Kreitz. 2007. The ILTP problem library
for intuitionistic logic. J. Autom. Reasoning 38 (1-3): 261–271. doi:10.1007/s10817-
006-9060-z.

Robinson, John Alan, and Andrei Voronkov, eds. 2001. Handbook of automated
reasoning (in 2 volumes). Elsevier and MIT Press.

Rosin, Christopher D. 2011. Nested rollout policy adaptation for Monte Carlo tree
search. In IJCAI, ed. Toby Walsh, 649–654. IJCAI/AAAI. doi:10.5591/978-1-57735-
516-8/IJCAI11-115. ISBN 978-1-57735-516-8.

Schadd, Maarten P. D., Mark H. M. Winands, Mandy J. W. Tak, and Jos W. H. M.
Uiterwijk. 2012. Single-player Monte-Carlo tree search for SameGame. Knowl.-

Machine Learning Guidance for Connection Tableaux 37

Based Syst. 34: 3–11. doi:10.1016/j.knosys.2011.08.008.
Schulz, Stephan. 2001. Learning search control knowledge for equational theorem

proving. In KI, eds. Franz Baader, Gerhard Brewka, and Thomas Eiter. Vol. 2174
of LNCS, 320–334. Springer. doi:10.1007/3-540-45422-5_23. ISBN 3-540-42612-4.

Schulz, Stephan. 2013. System description: E 1.8. In LPAR-19, eds. Kenneth L.
McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312 of LNCS, 735–743.
Springer. doi:10.1007/978-3-642-45221-5_49. ISBN 978-3-642-45220-8.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbren-
ner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep neu-
ral networks and tree search. Nature 529 (7587): 484–489. doi:10.1038/nature16961.

Slind, Konrad, and Michael Norrish. 2008. A brief overview of HOL4. In TPHOLs, eds.
Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar. Vol. 5170 of LNCS,
28–32. Springer. doi:10.1007/978-3-540-71067-7_6. ISBN 978-3-540-71065-3.

Sutcliffe, Geoff. 2009a. The 4th IJCAR automated theorem proving system competi-
tion - CASC-J4. AI Commun. 22 (1): 59–72. doi:10.3233/AIC-2009-0441.

Sutcliffe, Geoff. 2009b. The TPTP problem library and associated infrastructure. J.
Autom. Reasoning 43 (4): 337–362. doi:10.1007/s10817-009-9143-8.

Sutcliffe, Geoff. 2011. The 5th IJCAR automated theorem proving system competition
- CASC-J5. AI Commun. 24 (1): 75–89. doi:10.3233/AIC-2010-0483.

Sutcliffe, Geoff. 2016a. The 8th IJCAR automated theorem proving system competi-
tion - CASC-J8. AI Commun. 29 (5): 607–619. doi:10.3233/AIC-160709.

Sutcliffe, Geoff. 2016b. The CADE ATP system competition - CASC. AI Magazine
37 (2): 99–101. doi:10.1609/aimag.v37i2.2620.

Tseitin, Gregory S. 1983. On the complexity of derivation in propositional calculus.
In Automation of reasoning: 2: Classical papers on computational logic 1967–1970,
eds. Jörg H. Siekmann and Graham Wrightson, 466–483. Springer. doi:10.1007/978-
3-642-81955-1_28. ISBN 978-3-642-81955-1.

Urban, Josef. 2004. MPTP - motivation, implementation, first experiments. J. Autom.
Reasoning 33 (3-4): 319–339. doi:10.1007/s10817-004-6245-1.

Urban, Josef, Kryštof Hoder, and Andrei Voronkov. 2010. Evaluation of automated
theorem proving on the Mizar Mathematical Library. In ICMS, eds. Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama. Vol. 6327 of LNCS,
155–166. Springer. doi:10.1007/978-3-642-15582-6_30. ISBN 978-3-642-15581-9.

Urban, Josef, Jiří Vyskočil, and Petr Štěpánek. 2011. MaLeCoP machine learning
connection prover. In TABLEAUX, eds. Kai Brünnler and George Metcalfe. Vol.
6793 of LNCS, 263–277. Springer. doi:10.1007/978-3-642-22119-4_21. ISBN 978-3-
642-22118-7.

Urban, Josef, Geoff Sutcliffe, Petr Pudlák, and Jiří Vyskočil. 2008. MaLARea SG1-
machine learner for automated reasoning with semantic guidance. In IJCAR, eds.
Alessandro Armando, Peter Baumgartner, and Gilles Dowek. Vol. 5195 of LNCS,
441–456. Springer. doi:10.1007/978-3-540-71070-7_37. ISBN 978-3-540-71069-1.

Veroff, Robert. 1996. Using hints to increase the effectiveness of an auto-
mated reasoning program: Case studies. J. Autom. Reasoning 16 (3): 223–239.
doi:10.1007/BF00252178.

Wenzel, Makarius, Lawrence C. Paulson, and Tobias Nipkow. 2008. The Isabelle
framework. In TPHOLs, eds. Otmane Aït Mohamed, César A. Muñoz, and Sofiène

38 Michael Färber et al.

Tahar. Vol. 5170 of LNCS, 33–38. Springer. doi:10.1007/978-3-540-71067-7_7. ISBN
978-3-540-71065-3.

Whalen, Daniel. 2016. Holophrasm: a neural automated theorem prover for higher-
order logic. CoRR abs/1608.02644. http://arxiv.org/abs/1608.02644.

http://arxiv.org/abs/1608.02644

	Introduction
	Connection Calculi
	Functional-style Connection Prover
	Naive Bayesian Internal Guidance
	Monte Carlo Proof Search
	Related Work
	Conclusion and Future work

