
JEFL: Joint Embedding of Formal Proof Libraries

Qingxiang Wang1 and Cezary Kaliszyk1,2[0000−0002−8273−6059]

1 University of Innsbruck, Austria
2 University of Warsaw, Poland

shawn.wangqingxiang@gmail.com,cezary.kaliszyk@uibk.ac.at

Abstract. The heterogeneous nature of the logical foundations used in
different interactive proof assistant libraries has rendered discovery of
similar mathematical concepts among them difficult. In this paper, we
compare a previously proposed algorithm for matching concepts across
libraries with our unsupervised embedding approach that can help us
retrieve similar concepts. Our approach is based on the fasttext im-
plementation of Word2Vec, on top of which a tree traversal module is
added to adapt its algorithm to the representation format of our data ex-
port pipeline. We compare the explainability, customizability, and online-
servability of the approaches and argue that the neural embedding ap-
proach has more potential to be integrated into an interactive proof as-
sistant.

Keywords: Unsupervised Embedding · Concept Alignments · Proof
Formalization · System Integration.

1 Introduction

One of the challenges hindering massive formalization of mathematics is the
heterogeneous nature of the logical frameworks used in various interactive proof
assistants [11,27,8,13]. When formalizing proofs against one formal library, it is
informative to explore whether and how similar things are done in other libraries.
Such exploration has to be done manually and would usually require expertise
in the other proof assistants. It would be nice if a tool could let users more
systematically explore and discover commonality among formal libraries.

Not only can such a tool be an informative recommender when integrated
into an interactive proof assistant, but exploring commonalities among formal
libraries is also an interesting problem per se. Through time, multiple versions of
the same or similar mathematical concepts have been formalized separately, re-
sulting in repetitive work [21]. To the mathematically oriented, it is quite irksome
that identical mathematical concepts must require idiosyncratic formalizations in
order to achieve assurance. We believe that by investigating their commonalities,
insights on improving interoperability among proof assistants can be obtained,
thereby advancing the frontiers of combining systems.

Previous works [4,6] on this problem let us obtain a data export pipeline that
could transform data from six proof assistants into a common term representa-
tion format (Fig. 1), on top of which an iterative pattern-matching algorithm

2 Q. Wang, C. Kaliszyk

HOL4

HOL-Light

Isabelle

Coq

Matita

Mizar

Exporters

Preprocess

Patternify

Scoring
Iteration

Main

IO, Parsing...

Gauthier et al.

tt Vector Matrix

Utils Args Dict

Model

FastText

Main / Server

JEFL

tt sexp

Fig. 1. The architectural relationship between Gauthier’s approach and JEFL. At the
current stage, the exporters dump text in the tt format (Section 2). JEFL reuses the
IO/parsing module of Gauthier and passes s-expressions to the fasttext implementa-
tion.

that could output constant/theorem pairs with high similarity scores was in-
vented by Gauthier. The alignments between the concepts across multiple proof
libraries or within one library have been useful for tasks including conjecturing
[7], browsing multiple libraries simultaneously [25], and proof automation using
learned alignments [5].

The Gauthier approach, while being remarkably effective and useful, lacks
explainability, customizability and online-servability that hamper its integration
into proof assistants. By these three notions we mean the lack of mathematical
intuitiveness, lack of room for customization, and lack of possibility for system in-
tegration, respectively. We introduce an alternative embedding approach based
on the superb engineering of the fasttext implementation [1]. This new ap-
proach could potentially overcome these drawbacks while providing competitive
performance. It could also serve as a highly configurable experiment platform
for studying the alignment of multiple proof assistant libraries. We coin this
research JEFL, as an acronym for Joint Embedding of Formal Libraries.

2 Previous Works and the tt Format

Exchanging formal developments within or across formal systems has been stud-
ied through three strands of research. First, on the library translation side, many
tools that can partially translate proofs have been developed, including those

Joint Embedding of Formal Proof Libraries 3

from HOL to Isabelle/HOL [26], HOL Light to Coq [20], HOL Light to Is-
abelle/HOL [16], respectively. Second, on the ontology sharing side, Bortin [2],
Rabe [30], Hurd [14], So and Watt [32], and Carlisle et al. [3] each made their
own contribution translating specifications or formal proof objects between for-
mal or semi-formal mathematical representations. These two strands of research
mostly either solely provide guidelines on manual processing or require manual
work at a certain phase of their framework.

The third strand comes from enhancements of ITP systems. Heras and Komen-
dantskaya [12] implemented a recurrent term clustering algorithm to find proof
similarities in Coq/SSReflect libraries. Urban [34] created tools for large-scale
retrieval of the Mizar Mathematical Library into a clausal format. Kaliszyk and
Urban [17] exported the core HOL Light library as well as the Flyspeck [10] li-
brary to evaluate the relevance of lemmas by combining the power of automated
theorem provers. This work was later extended to a web service [19] and ex-
perimented with using multiple representation formats and different automated
theorem provers in [18].

A byproduct along [17,19,18] was a collection of exporting and post-processing
techniques specific to HOL Light, including a TPTP-style [33] data representa-
tion format which we internally called “the tt format”. The formalism of tt is
based on a simple term structure that is flexible enough to represent the kernel
representations of formal data on diverse logical foundations, so there is a poten-
tial to export data from multiple proof assistants into this common format. Based
on the export of three HOL libraries (HOL Light, HOL4, and Isabelle/HOL),
Gauthier and Kaliszyk proposed the first version of their scoring algorithm [4]
and used for various conjecturing and transfer learning tasks. A more compre-
hensive set of alignment experiments refined the scoring algorithm, provided a
more uniform pattern-matching and guaranteed convergence, and was used on
six proof assistant libraries (adding Coq, Matita, and Mizar) [6].

Listing 2.1 and 2.2 illustrate the definition of the predecessor of the naturals
(PRE) of HOL Light being translated into a list of three tt items. The last
arguments of them can be parsed into term structures (Fig. 2) using the type
definition in Listing 2.3.

Listing 2.1. Definition of the predecessor of the naturals PRE in HOL Light.

let PRE = new_recursive_definition num_RECURSION
‘(PRE 0 = 0) /\
(!n. PRE (SUC n) = n)‘;;

Listing 2.2. PRE transformed to three tt items.

01. tt(’const/arith/PRE ’, ty , (’type/nums/num ’ > ’type/nums/num ’)).
02. tt(’thm/arith/PRE_0 ’, ax ,

((’const/arith/PRE ’ (’const/nums/NUMERAL ’ ’const/nums/_0 ’)) =
(’const/nums/NUMERAL ’ ’const/nums/_0 ’))).

03. tt(’thm/arith/PRE_1 ’, ax ,
(![n : ’type/nums/num ’]:

((’const/arith/PRE ’ (’const/nums/SUC ’ n)) = n))).

4 Q. Wang, C. Kaliszyk

Listing 2.3. Type definition of tt term in OCaml for parsing.

type ttterm =
| Id of string (* may be a constant or variable *)
| Comb of ttterm * ttterm
Abs of string * ttterm * ttterm ;;

The HOL Light and HOL4 exports directly use HOLyHammer’s export [18].
For Isabelle, an ML component was implemented that extracts all theorems of
the theory and writes them together with the declared constants and types in a
text file. The Coq export to the tt format was implemented by Gauthier as part
of his work [6]. For Mizar, we rely on Urban’s MPTP pipeline [35] and transform
the intermediate XML2 representation.

Comb

Id(:) Comb

Id(PRE) Comb

Id(>) Comb

Id(num) Id(num)

01

Comb

Id(=) Comb

Comb

Id(PRE) Comb

Id(NUMERAL) Id(0)

Comb

Id(NUMERAL) Id(0)

02 Comb

Id(!) Abs

n Id(num) Comb

Id(=) Comb

Comb

Id(PRE) Comb

Id(SUC) Id(n)

Id(n)

03

Fig. 2. Term structures of the definition of PRE. The tokens PRE, num, NUMERAL
and SUC are short for const/arith/PRE, type/nums/num, const/nums/NUMERAL and
const/nums/SUC, respectively. Note that the constant const/arith/PRE is included
into the term 01 with a type assignment operator ’:’. This allows embedding vectors
to be assigned to the definition constants.

3 The Architecture of JEFL

In this paper, we focus on the core similarity discovery algorithm. Our claim
on advantages in JEFL is with respect to the algorithmic part of the system.
We leave the eventual integration of the whole framework into proof assistants,
with issues such as handling constants that have not been encountered during
training, as future work.

Joint Embedding of Formal Proof Libraries 5

3.1 Similarity through Embedding

A natural way to find similarities among concepts is to treat our problem as a
distributed representation learning task. Generally speaking, given a structure
composed of atomic units, distributed representation learning seeks to represent
each of the atomic units with a low-dimensional vector. In effect, all the units are
embedded into a Euclidean space, with their coordinates respecting the overall
structure. The notion distributedness comes from the fact that the vocabulary
size of a corpus is much larger than the dimension of a vector, and the information
of an atomic unit is distributed in the coordinates of a vector.

The vectors are learned by analyzing the context of each unit, i.e. the infor-
mation of units adjacent to or surrounding a target unit. Once vector represen-
tations for units are learned, similarity between units can then be computed by
cosine similarity with a range from [−1, 1]. For a set of units, vector represen-
tation can be computed by taking average of the vectors, and then similarity
between different sets of units can also be computed using cosine similarity.

Notable unsupervised distributed representation learning algorithms include
Pennington et al.’s GloVe algorithm [28] and Mikolov et al.’s Word2Vec algo-
rithm [23,24]. In this paper, we use Mikolov’s Word2Vec algorithm. Word2Vec
works on texts or lists of word tokens. For each word in the training corpus, a
randomized span of words surrounding that word is picked to form the context
of that word. The context is then consumed by the Word2Vec model to conduct
one step of the stochastic gradient descent updates.

3.2 Adaptation of the tt Format in Word2Vec

To illuminate our technique, it is interesting to note that DeepWalk [29] and
Node2Vec [9], two methods on embedding large networks, also use Word2Vec
as their underlying algorithm. The data used by DeepWalk and Node2Vec are
single-graph datasets with nodes that contain heterogenous information such as
social profile details. To fit Word2Vec, first the node information of the graph
has to be transformed into a dictionary through data processing. Then we per-
form random walks along the paths of the graph to generate node sequences
that resemble text corpus. For each node in a node sequence, the corresponding
context is generated as a span of nodes surrounding that node.

In our case, different from DeepWalk and Node2Vec, the formal library data
in the tt format are not a single graph but a collection of trees. More precisely, in
order to compare two libraries, we need two lists of tt items from the two libraries
to provide as training data. The tt items are parsed as trees and then traversed
in different ways to create sequences of node constants. Examples of traversals
include preorder, inorder, postorder traversals and their reverses, random walks
from the root to a leaf, or just dump the leaves of a tree in some order. With
clever design, these traversals can also be combined to create hybrid orders.
At the current phase we implemented a simple weighted mechanism combining
preorder, inorder and postorder traversals. The weights of traversals are used to
control the learning rate for SGD updates and are hyperparameters determined

6 Q. Wang, C. Kaliszyk

before training (Fig. 3). We anticipate further experimental insights when other
forms of traversals are implemented in the future.

Comb

Id(!) Abs(x)

Id(num) Comb

Id(=) Comb

Id(x) Id(x)

pre:1

in:2

post:9

pre:2

in:1

post:1 pre:3

in:4

post:8

pre:4

in:3

post:2 pre:5

in:6

post:7

pre:6

in:5

post:3 pre:7

in:8

post:6

pre:8

in:7

post:4 pre:9

in:9

post:5

Comb Id ! Abs x Id num Comb Id = Comb Id x Id x

cbow(model, 0.5*lr, preorder_line);

Id ! Comb Id num Abs x

Id = Comb Id x Comb Id x

cbow(model, 0.3*lr, inorder_line);

Id ! Id num Id = Id x Id x

Comb Comb Abs x Comb

cbow(model, 0.2*lr, postorder_line);

Fig. 3. Preorder, inorder, and postorder traversals of a simple theorem ∀x :
num. (x = x), with weights 0.5, 0.3, 0.2, respectively. Example illustrated by calling
the CBOW method of fasttext, where lr is the learning rate and the third argument
contains the token sequence above it. Inside the CBOW method, for each token, a
randomized span of words surrounding that token is obtained to compute the hidden
vector.

Both DeepWalk and Node2Vec directly use the Word2Vec implementation of
the Gensim [31] topic modeling library. For ease of future integration into proof
assistants we pick a dedicated Word2Vec implementation fasttext [15] as our
base platform. To make our customization less intrusive we add a custom tree
traversal module to the codebase of fasttext, also called the ttmodule (Fig. 1).
The tt module parses the terms in the tt format and builds corresponding trees
in the memory of JEFL.

3.3 The SGD Updates of Word2Vec

It remains to discuss the core Word2Vec algorithm, which is divided into two
aspects: 1. what is the probability model for Word2Vec training and 2. how the
loss function is computed. In the former, there are the continuous bag-of-words
model (CBOW) and the skip-gram model. They appear at the step of the train-
ing loop outside stochastic gradient descent (SGD) updates and determine how
data samples are used. In the latter, there are the softmax loss, the hierarchical
softmax loss, and the negative sampling loss. They compute the loss function,
at the same time determine the gradients and update the input and output ma-

Joint Embedding of Formal Proof Libraries 7

trices. The two training models are compatible with the three loss functions, so
there are in total six variations of the Word2Vec algorithm3.

As the full Word2Vec algorithm is extensive, we briefly describe the differ-
ence between skip-gram and CBOW using the simplest softmax case. We skip
detailed derivations and remind the reader of the abundance of study materials
of Word2Vec on the internet4.

Let C be the training corpus, V be the size of the dictionary of C, and D
be the dimension of a word vector. Denote M ∈ RV×D as the input matrix
which we use to store all the word vectors. Denote N ∈ RV×D as the output
matrix which we use to store customized data items depending on the loss func-
tion. Let w ∈ {1, 2, . . . , V } be a word, or more precisely, the index of an actual
word in the dictionary. We denote Mw as the w-th row of the input matrix M .
Similarly we denote Nu as the u-th row of the output matrix N , given a word
u ∈ {1, 2, . . . , V }. Both Mw and Nu are D-dimensional row vectors. For each
word w, denote context(w) as a randomized span of words surrounding w. Let
η > 0 be the learning rate.

From the probability modeling point of view, CBOW amounts to maximizing
the log-likelihood of the form

L = log
∏
w∈C

P (w|context(w)) =
∑
w∈C

log softmax(NhT)w,

where

h =
1

|context(w)|
∑

u∈context(w)

Mu

is the hidden vector. The SGD updates are computed by taking increments of
the gradients of the objective (as we want to maximize the log-likelihood) 5

Nu := Nu + η
(
δuw − softmax(NhT)u

)
h for u ∈ {1, . . . , V }

Mu :=Mu +
η

|context(w)|

V∑
v=1

(
δvw − softmax(NhT)v

)
Nv for u ∈ context(w)

The skip-gram model amounts to maximizing the log-likelihood of the following
form

L = log
∏
w∈C

P (context(w)|w) = log
∏
w∈C

∏
u∈context(w)

p(u|v)

=
∑
w∈C

∑
u∈context(w)

log softmax(NhT)u

3 As to writing of this paper, one more loss function (the one-vs-all, or the ova loss)
has been added to the latest version of fasttext, making in total eight variations.

4 The first author finds this note https://github.com/renpengcheng-
github/nlp/tree/master/3.word2vec (in Chinese) particularly helpful in under-
standing Word2Vec.

5 We use the term stochastic gradient descent here for convention though we are in
fact doing stochastic gradient ascent.

https://github.com/renpengcheng-github/nlp/tree/master/3.word2vec
https://github.com/renpengcheng-github/nlp/tree/master/3.word2vec

8 Q. Wang, C. Kaliszyk

where
h =Mw

is a D-dimensional row vector. For each u ∈ context(w), the SGD updates are

Nw̃ := Nw̃ + η
(
δw̃u − softmax(NhT)w̃

)
Mw for w̃ ∈ {1, . . . , V }

Mw :=Mw + η

V∑
v=1

(
δvu − softmax(NhT)v

)
Nv.

Algorithm 1 Full algorithm for CBOW and skip-gram with softmax loss
1: for w ∈ C do
2: Get sample (w, context(w)). . See Section 3.2
3: if CBOW then
4: h := 0
5: for v ∈ context(w) do
6: h := h+Mv

7: end for
8: h := h/|context(w)| . 1. Get hidden vector (cbow)
9: g := 0
10: for u ∈ {1, . . . , V } do . Room for speedup
11: s := softmax

(
NhT

)
u

12: α := η (δuw − s)
13: g := g + αNu . 2. Accumulate gradient (cbow)
14: Nu := Nu + αh . 3. Update output matrix (cbow)
15: end for
16: g := g/|context(w)|
17: for u ∈ context(w) do
18: Mu :=Mu + g . 4. Update input rows (cbow)
19: end for
20: else . Skip-gram
21: h :=Mw . 1. Get hidden vector (skipgram)
22: for u ∈ context(w) do
23: g := 0
24: for w̃ ∈ {1, . . . , V } do . Room for speedup
25: s := softmax

(
NhT

)
w̃

26: α := η (δw̃u − s)
27: g := g + αNw̃ . 2. Accumulate gradient (skipgram)
28: Nw̃ := Nw̃ + αh . 3. Update output matrix (skipgram)
29: end for
30: Mw :=Mw + g . 4. Update input rows (skipgram)
31: end for
32: end if
33: end for

Joint Embedding of Formal Proof Libraries 9

3.4 The fasttext Implementation of Word2Vec

The full SGD update algorithm is shown in Algorithm 1. Notice that, for both
CBOW and skip-gram, in each round of model updates there are essentially four
identical steps: 1. obtain hidden vector, 2. accumulate gradient, 3. update rows
of the output matrix, and 4. update rows of the input matrix. This four-step
abstraction is general not only for softmax but also for hierarchical softmax and
negative sampling, which are specifically designed to speed up the calculation of
the inner loop in line 10, 24 of Algorithm 1.

The architecture of fasttext was inspired by this four-step abstraction.
Since its initial development in 2016, lots of advanced functionalities have been
added on top of the Word2Vec algorithm, including model quantization, auto-
tuning, python binding, etc. This makes the codebase large and many of those
functionalities are irrelevant to our research. Therefore we use an earlier commit
in late 2016 as our base6. In this commit, all six variations of Word2Vec have
been implemented and very few advanced functionalities are added. Two of them
worth mentioning are: 1. subsampling of most frequent words, and 2. subword
information enrichment trick. The first is an extension of the Word2Vec algo-
rithm in [24] to filter out disproportionally frequent words in the training corpus.
This function is disabled since it is obvious in our dataset that the most frequent
tokens are always Comb, Id, and Abs, respectively, and they have to be included
to allow for correct parsing of tt items. The second is a feature in the fasttext
implementation [15] which breaks a word token into segments of character-level
n-gram tokens. This is also disabled since constants in our embedding task (e.g.
’const/arith/PRE’) constitute a unique and separate entity, and enabling this
feature would normally increase the size of a training model by more than a
hundred times. The original src directory of this commit contains 2054 lines of
C++ code written in C++11.

4 Experimenting with JEFL

The core algorithm part of JEFL consists of 8 modules of the original fasttext
plus a custom module for term parsing and traversal (Fig. 1 right). We find that
the best way for customization is to add to the args module a new flag (isTT)
to denote whether our training corpus is a list of tt items or plain texts. The
normal process flow is not interrupted if this flag is false, so JEFL can also train
on plain text. If isTT is true, then subsampling is suppressed when reading in
the input files. This allows all tokens of tt terms to be read so that term parsing
can be done correctly. The tt items are read, parsed and the parsed terms can
be reconstructed as trees in the C++ side. Helper functions are then called to
traverse a tree in different orders, look up the index values of its constants from
a dictionary, and call fasttext’s original CBOW or skip-gram method for SGD
updates (Fig. 3).

6 c62abb89396a94520f009f9095874953735e0d75

10 Q. Wang, C. Kaliszyk

We report our initial round of experiments with this platform and two formal
proof libraries, HOL4 and HOL Light, testing the performance of different hyper-
parameter combinations. There are in total 18723 and 16874 lines of tt items
in HOL4 and HOL Light, respectively. We concatenate and shuffle the exported
theorems from the two libraries, and then write them out as s-expressions [22].7
We evaluate the performance by comparing against the 1000 highest-scoring
constant pairs, that have been manually checked by Gauthier in his work, and
considered here as a baseline.

Top-1 Hit Top-3 Hit Top-10 Hit Top-20 Hit
Tree-Dump 51 101 188 261
Leaf-Dump 21 61 96 144

Table 1. Comparison of theorem export formats. Tree-dump exports the whole tree
representation in the given order, while leaf-dump exports only the sequence of data
present in the leafs.

Top-1 Hit Top-3 Hit Top-10 Hit Top-20 Hit
Skip-Gram 54 108 264 283
CBOW 51 101 188 261

Table 2. Comparison of models skip-gram and continuous bag of words.

Top-1 Hit Top-3 Hit Top-10 Hit Top-20 Hit
Hierarchical Softmax 78 161 304 419
Negative Sampling 51 101 188 261

Table 3. Comparison of sampling hierarchical softmax vs. negative sampling

We present four sets of experiments for the initial comparison. We measure
JEFL’s performance against the Gauthier baseline by using the “Top-N Hit”
metric, which means the inclusion of the correct answer from the closest N
neighbors of the target constant. By default, we use leaf-dump (sequences of
data present in the leafs), CBOW, negative sampling, and equal (0.33,0.33,0.33)
weights. For other key parameters of fasttext, we set vector dimension as 100,
learning rate 0.05, random uniform context window size 1 to 10, training epoch
5 (for most experiments we see little training progress after epoch 5, so for a

7 This gives a total of 35597 s-expressions for Word2Vec training.

Joint Embedding of Formal Proof Libraries 11

(pre-,in-,post-order) Top-1 Hit Top-3 Hit Top-10 Hit Top-20 Hit
(0.33,0.33,0.33) 51 101 188 261
(0.5,0.3,0.2) 58 103 205 267
(1,0,0) 53 110 204 256
(0.5,0.5,0) 49 113 207 276
(0,0.5,0.5) 57 106 203 268

Table 4. Combination of the effect of weights given to the different traversals. The table
shows the weights given to pre-order, in-order, and post-order respectively, together
with their effects on finding same constants across libraries.

fair evaluation we stick with 5 epochs for all evaluations), 5 negative samples for
negative sampling loss, and 4 training threads.

Experiment 1 (Table 1) tests the difference between tree-dump (dumping s-
expression) vs. leaf-dump (dumping leaves as token sequences). This experiment
is the first one to test that our customization blends with the normal process
flow of fasttext. We see that tree traversal gives better hit rates than just use
the leaves as the former uses more information in training.

Experiment 2 (Table 2) tests the difference between skip-gram and CBOW.
We see that skip-gram performs better than CBOW in all hit rates. However, as
noted in Section 3.3, skip-gram takes longer time to train (this depends on the
size of the contexts, and in our experiments skip-gram takes about five times
longer). For ease of experiment, we fall back to use CBOW as our default.

Experiment 3 (Table 3) shows a clear advantage of hierarchical softmax over
negative sampling. We see a 60% increase in all the hit rates. We speculate
that this improvement is due to the fact, that the Huffman tree computation
in hierarchical softmax might put an advantage in mining patterns in tree-like
data structures.

Experiment 4 (Table 4) explores different combinations of weights in tree-
traversal. They all outperform leaf-dump, however, none of the combinations
performs significantly better than others. We plan to explore other forms of
traversal such as random walks to see further results.

5 Comparison with Iterative Pattern-Matching

In this section, we shortly recall the iterative pattern-matching algorithm de-
veloped by Gauthier and Kaliszyk [6], and compare it with the work presented
here. The iterative pattern matching algorithm is based on the observation that
once mathematical information in different formal libraries is represented in the
same tt format, similar theorems or typing judgements (as terms of tt) tend
to have identical term structures. Accordingly, similar constants (as leaves of
terms) tend to locate in corresponding slots of a term (Fig. 4). To abstract out
common term structure, Gauthier invented the notion pattern of a term. The
pattern of a term T is created by abstracting out, in a canonical order, all the
T ’s non-logical constants. Two terms T1 and T2 sharing the same pattern form a

12 Q. Wang, C. Kaliszyk

matching pair of terms. Corresponding slots of a matching pair of terms induce
a collection of matching pairs of constants.

Comb

Id(!) Abs(x)

Id(num) Comb

Id(=) Comb

Comb

Id(+) Comb

Id(x) Id(0)

Id(x)

Comb

Id(!) Abs(x)

Id(v1) Comb

Id(=) Comb

Comb

Id(v2) Comb

Id(x) Id(v3)

Id(x)

Comb

Id(!) Abs(x)

Id(real)Comb

Id(=) Comb

Comb

Id(×) Comb

Id(x) Id(1)

Id(x)

T1 ∀x : num. (x+ 0 = x) T2 ∀x : real. (x× 1 = x)

P λv1λv2λv3. (∀x : v1. (x = x v2 v3))

Fig. 4. T1 and T2 form a matching pair of terms with pattern P . Three matching
pairs of constants can be induced from this pattern. We treat equality = and universal
quantification ! as logical constants. Bound variables are assumed to be normalized.

Given two formal libraries L1 and L2. Let {ti}1≤i≤m be the collection of all
matching pairs of terms, with ti = (ti1, ti2), ti1 ∈ L1, and ti2 ∈ L2. Let {cj}1≤j≤n
be the collection of all matching pairs of constants, with cj = (cj1, cj2). Let
g(x) = x/(x + 1) : R+ → [0, 1) be a strictly increasing normalization function.
Define an indicator function δ(cj , ti) and set δ(cj , ti) = 1 if constant pair cj can
be induced by term pair ti and 0 otherwise. Similarity scores between pairs of
terms and pairs of constants can be calculated using the following recurrence
relations

score0c (cj) = 1, j = 1, . . . , n.

scoreTt (ti) = wt (ti)
∑n

l=1 δ(cl, ti) score
T−1
c (cl), i = 1, . . . ,m.

scoreTt (cj) = g
(
wc (cj)

∑m
k=1 δ(cj , tk) score

T
t (tk)

)
, j = 1, . . . , n.

(1)

where T = 0, 1, 2, . . . is the iteration step and the weighting functions for terms
wt (ti) and constants wc (cj) are determined using heuristics

wt (ti) =
1

ln(2+p(ti))
1

ln(2+q(ti))
, i = 1, . . . ,m.

wc (cj) =
1

ln(2+r(cj1)×r(cj2)) , j = 1, . . . , n.

p (ti) = #{term pairs sharing the same pattern as ti}, i = 1, . . . ,m.

q (ti) = #{constant pairs induced by ti}, i = 1, . . . ,m.

r (cjd) = #{terms containing cjd}, d = 1 or 2, j = 1, . . . , n.

(2)

Joint Embedding of Formal Proof Libraries 13

By rewriting equation (1) with respect to scoreTt (cj) and using properties of g,
δ, wt, and wc, Gauthier proved the convergence of this scoring algorithm (using
monotone convergence theorem coordinate-wise in [0, 1]n) [6].

5.1 Advantages and Drawbacks of Iterative Pattern Matching

Gauthier’s iterative pattern-matching algorithm is cleverly designed. Intuitively,
the existence of a pattern already indicates a strong correlation among term
pairs, and the existence of constant pairs at corresponding slots of a pattern
already indicates a strong correlation among those constant pairs; The indicator
function δ transports “similarity awards” among those pairs, while the weight-
ing functions wt and wc penalize frequently occurring patterns. Above all, the
normalization function g ensures the validity of the scores and is crucial for
convergence of the algorithm. All these components are intricately combined to
make the whole algorithm effective in discovering identical or similar mathemat-
ical concepts.

Nevertheless, Gauthier’s algorithm possesses some inherent drawbacks. From
the explainability angle, the balance between the heuristics (wt, wc and their
components p, q, and r) in equation (2) and the score accumulation terms (

∑
and δ) in equation (1) is, to our mind, hard to explain clearly and difficult to
readjust. The convergence of the algorithm is mostly due to the property of the
normalization function g but the link between this convergence and how sim-
ilarity scores are sorted is weak. The algorithm works on spaces of similarity
scores between matching pairs of terms and constants, so from its beginning, the
information on non-matching terms and constants is thrown away, losing the
possibility to look at the alignment of different proof assistant libraries holisti-
cally.

Comparatively, our approach provides much more flexibility and intuitive-
ness. Using distributed representation learning, all the constants are movable
points in Euclidean space and similarity between constants are naturally de-
scribed as cosine similarity between their coordinates. By using an embedding
approach, not only the “matching” pairs, but also similarity between all pairs of
constants can be retrieved and their computation is cheap.

From the customizability angle, the components of Gauthier’s algorithm are
so intricately combined that there seems little opportunity to adjust the algo-
rithm further. In the implementations of both [4] and [6], most of the extra work
is on preprocessing terms using combinations of rewriting rules to create a vary-
ing set of patterns. These rewriting rules include, e.g. rewriting to conjunctive
normal forms, reordering commutative/associative connectives, substituting sub-
terms with definitions, as well as exposing various levels of typing information.
All these customizations are only allowed in the preprocessing phase and limited
to only employing rewriting rules. Some of the typing exposure rules require
specific knowledge of representing a library in the tt format. As these rewriting-
based customizations have already been thoroughly investigated in [6], it seems
to us that further investigation along this line is destined to a diminishing return.

14 Q. Wang, C. Kaliszyk

Comparatively, customization of JEFL can be done at different phases of the
full training algorithm, such as the data generation phase, term traversal phase,
model update phase, etc. This multi-level customization can create combinato-
rially much more room for parameter-tuning and experimentation. Moreover,
except data generation, all other customizations that are within the algorithm
can be more uniformly done. Specifically, data fields and command parsing can
be added to the args module, and then used at desired places of the data flow.

From the online-servability angle, despite the fact that Gauthier’s algorithm
is overall fast and effective on small data, it is still quadratic on the size of the
input libraries, since it needs to enumerate all pairs of terms to find patterns.
Being a batch program without a separated and instantaneous evaluation phase,
it is not tempting to integrate the whole algorithm into an actual interactive
proof assistant. Moreover, even if it were to be used as an online recommender,
the only information we can retrieve would be limited to only the matching pairs.

In JEFL, despite more computations are involved, training is linear with re-
spect to the size of the corpus. This makes JEFL more suitable for obtaining
similarity measurements on a large training corpus. JEFL provides a clear sepa-
ration between a training phase and an evaluation phase. The evaluation phase
is instant once the model is loaded. This allows JEFL to have more potential to
be integrated as a service. In the version of the fasttext commit used in JEFL,
if subword information is disabled, the size of most of the models dumped after
training are less than 5MB. This is a negligible size comparing to the size of a
modern proof assistant.

6 Conclusion

In this paper, we identify the need for commonality discovery among formal
libraries. We introduce our data pipeline, especially its preceding works, and
elaborate our internal tt formalism. Methodologically, we describe the archi-
tecture of JEFL and make a series of first experiments to test the efficacy of
our experiment platform and provide a high-level comparative analysis with the
iterative pattern matching algorithm.

6.1 Limitations and Future Work

There are a lot of future possibilities in our JEFL platform. Continuing in the
current line of development, we still need to experiment on the other four libraries
and additionally explore similarity discovery of not only constants but also terms.
We could also explore the effect of vector initialization in our discovery algorithm.
To go deeper we could implement custom “dragging” and “repelling” steps using
geometric manipulation and intersperse these custom steps with SGD updates.
We have focused on one pair of libraries, which could be extended to an em-
bedding of multiple libraries combined. This would provide further experiment
opportunities. We also plan to use the newly discovered samples from JEFL
to do tasks such as conjecturing [7], cross-browsing [25], and stronger learning

Joint Embedding of Formal Proof Libraries 15

for hammers [5]. Last but not least, we hope there could be use cases to inte-
grate our pipeline into an actual proof assistant and see improved formalization
productivity.

Acknowledgements

We are largely indebted to Thibault Gauthier for his work on alignments and the
various data exports that we re-use. We thank Josef Urban for the Mizar export
and his invitation to Prague to discuss research. We also thank Tomáš Mikolov
for valuable insights for the current work. This work was supported by the ERC
grant no. 714034 SMART and by the University of Innsbruck PhD scholarship.

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017), https://aclanthology.org/Q17-1010

2. Bortin, M., Lüth, C.: Structured formal development with quotient types in is-
abelle/hol. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rio-
boo, R., Sexton, A.P. (eds.) Intelligent Computer Mathematics. pp. 34–48. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

3. Carlisle, D., Davenport, J., Dewar, M., Hur, N., Naylor, W.: Conversion between
mathml and openmath. Technical Report 24.969, The OpenMath Society (2001)

4. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.,
Davenport, J., Sexton, A., Sojka, P., Urban, J. (eds.) Proc. of the 7th Conference
on Intelligent Computer Mathematics (CICM’14). LNCS, vol. 8543, pp. 267–281.
Springer Verlag (2014). https://doi.org/10.1007/978-3-319-08434-3_20

5. Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL Light proof knowl-
edge. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) 20th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2015). LNCS, vol. 9450, pp. 372–386. Springer (2015).
https://doi.org/10.1007/978-3-662-48899-7_26

6. Gauthier, T., Kaliszyk, C.: Aligning concepts across proof as-
sistant libraries. J. Symbolic Computation 90, 89–123 (2019).
https://doi.org/10.1016/j.jsc.2018.04.005

7. Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjec-
turing over large formal corpora. In: Kohlhase, A. (ed.) Work in Progress at the
Conference on Intelligent Computer Mathematics 2016 (CICM-WiP 2016). CEUR,
vol. 1785, pp. 219–228. CEUR-WS.org (2016)

8. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010). https://doi.org/10.6092/issn.1972-5787/1980,
https://doi.org/10.6092/issn.1972-5787/1980

9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks (2016)
10. Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi,

H., Roy, M.F. (eds.) Mathematics, Algorithms, Proofs. pp. 1–11. No. 05021 in
Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany
(2006), http://drops.dagstuhl.de/opus/volltexte/2006/432

https://aclanthology.org/Q17-1010
https://doi.org/10.1007/978-3-319-08434-3_20
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1016/j.jsc.2018.04.005
https://doi.org/10.6092/issn.1972-5787/1980
https://doi.org/10.6092/issn.1972-5787/1980
http://drops.dagstuhl.de/opus/volltexte/2006/432

16 Q. Wang, C. Kaliszyk

11. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2009).
LNCS, vol. 5674, pp. 60–66. Springer (2009). https://doi.org/10.1007/978-3-642-
03359-9_4, https://doi.org/10.1007/978-3-642-03359-9_4

12. Heras, J., Komendantskaya, E.: Proof pattern search in coq/ssreflect. CoRR
abs/1402.0081 (2014), http://arxiv.org/abs/1402.0081

13. Huet, G.P., Herbelin, H.: 30 years of research and development around
Coq. In: Jagannathan, S., Sewell, P. (eds.) ACM Symposium on Princi-
ples of Programming Languages, POPL 2014. pp. 249–250. ACM (2014).
https://doi.org/10.1145/2535838.2537848, https://doi.org/10.1145/2535838.
2537848

14. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund, K.,
Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods. pp. 177–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

15. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers. pp.
427–431. Association for Computational Linguistics, Valencia, Spain (Apr 2017),
https://www.aclweb.org/anthology/E17-2068

16. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) Proc. of the 4th International Conference on In-
teractive Theorem Proving (ITP’13). LNCS, vol. 7998, pp. 51–66. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-39634-2_7

17. Kaliszyk, C., Urban, J.: Lemma mining over HOL Light. In: LPAR. pp. 503–517
(2013)

18. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
J. Autom. Reasoning 53(2), 173–213 (2014). https://doi.org/10.1007/s10817-014-
9303-3, http://dx.doi.org/10.1007/s10817-014-9303-3

19. Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for
HOL Light. Mathematics in Computer Science 9(1), 5–22 (2015).
https://doi.org/10.1007/s11786-014-0182-0

20. Keller, C., Werner, B.: Importing hol light into coq. In: Kaufmann, M., Paulson,
L.C. (eds.) Interactive Theorem Proving. pp. 307–322. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

21. Klein, G.: Proof engineering considered essential. In: Jones, C.B., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014: Formal Methods - 19th International Symposium. LNCS,
vol. 8442, pp. 16–21. Springer (2014). https://doi.org/10.1007/978-3-319-06410-
9_2, https://doi.org/10.1007/978-3-319-06410-9_2

22. McCarthy, J.: Recursive functions symbolic expressions and their compu-
tation by machine, Part I. Communications of the ACM 3(4), 184–195
(Apr 1960). https://doi.org/10/fvx5pv, http://dl.acm.org/citation.cfm?id=
367177.367199, zSCC: NoCitationData[s0] Publisher: ACM ISBN: 0001-0782

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Confer-
ence on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings (2013), http://arxiv.org/abs/1301.3781

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Dis-
tributed representations of words and phrases and their compositionality. In:
Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems. vol. 26. Curran

https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
http://arxiv.org/abs/1402.0081
https://doi.org/10.1145/2535838.2537848
https://doi.org/10.1145/2535838.2537848
https://doi.org/10.1145/2535838.2537848
https://www.aclweb.org/anthology/E17-2068
http://dx.doi.org/10.1007/978-3-642-39634-2_7
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s11786-014-0182-0
https://doi.org/10.1007/978-3-319-06410-9_2
https://doi.org/10.1007/978-3-319-06410-9_2
https://doi.org/10.1007/978-3-319-06410-9_2
https://doi.org/10/fvx5pv
http://dl.acm.org/citation.cfm?id=367177.367199
http://dl.acm.org/citation.cfm?id=367177.367199
http://arxiv.org/abs/1301.3781

Joint Embedding of Formal Proof Libraries 17

Associates, Inc. (2013), https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

25. Müller, D., Gauthier, T., Kaliszyk, C., Kohlhase, M., Rabe, F.: Classification of
alignments between concepts of formal mathematical systems. In: Geuvers, H.,
England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) 10th International Conference
on Intelligent Computer Mathematics (CICM’17). LNCS, vol. 10383, pp. 83–98.
Springer (2017). https://doi.org/10.1007/978-3-319-62075-6_7

26. Obua, S., Skalberg, S.: Importing hol into isabelle/hol. In: Furbach, U., Shankar,
N. (eds.) Automated Reasoning. pp. 298–302. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

27. Paulson, L.C.: Isabelle: The next seven hundred theorem provers. In: Lusk,
E.L., Overbeek, R.A. (eds.) 9th International Conference on Automated
Deduction, CADE 1988. LNCS, vol. 310, pp. 772–773. Springer (1988).
https://doi.org/10.1007/BFb0012891, https://doi.org/10.1007/BFb0012891

28. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP. vol. 14, pp. 1532–1543 (2014)

29. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of so-
cial representations. Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (Aug 2014).
https://doi.org/10.1145/2623330.2623732, http://dx.doi.org/10.1145/
2623330.2623732

30. Rabe, F.: The MMT API: A generic MKM system. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) Intelligent Computer Mathematics -
MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM
2013, Bath, UK, July 8-12, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7961, pp. 339–343. Springer (2013). https://doi.org/10.1007/978-3-642-39320-
4_25, https://doi.org/10.1007/978-3-642-39320-4_25

31. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. pp. 45–50. ELRA, Valletta, Malta (May 2010), http://is.muni.cz/
publication/884893/en

32. So, C.M., Watt, S.M.: On the conversion between content mathml and openmath.
In: Proc. of the Conference on the Communicating Mathematics in the Digital Era
(CMDE 2006). pp. 169–182 (2006)

33. Sutcliffe, G.: The TPTP world - infrastructure for automated reasoning. In: LPAR
(Dakar). pp. 1–12 (2010)

34. Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized
mathematics. Int. J. on Artificial Intelligence Tools 15(1), 109–130 (2006), http:
//ktiml.mff.cuni.cz/~urban/MoMM/momm.ps

35. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Au-
tom. Reasoning 37(1-2), 21–43 (2006). https://doi.org/10.1007/s10817-006-9032-3,
https://doi.org/10.1007/s10817-006-9032-3

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1007/978-3-319-62075-6_7
https://doi.org/10.1007/BFb0012891
https://doi.org/10.1007/BFb0012891
https://doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/978-3-642-39320-4_25
https://doi.org/10.1007/978-3-642-39320-4_25
https://doi.org/10.1007/978-3-642-39320-4_25
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://ktiml.mff.cuni.cz/~urban/MoMM/momm.ps
http://ktiml.mff.cuni.cz/~urban/MoMM/momm.ps
https://doi.org/10.1007/s10817-006-9032-3
https://doi.org/10.1007/s10817-006-9032-3

	JEFL: Joint Embedding of Formal Proof Libraries

