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Abstract
We present sem ind, a recommendation tool for
proof by induction in Isabelle/HOL. Given an in-
ductive problem, sem ind produces candidate ar-
guments for proof by induction, and selects promis-
ing ones using heuristics. Our evaluation based
on 1,095 inductive problems from 22 source files
shows that sem ind improves the accuracy of rec-
ommendation from 20.1% to 38.2% for the most
promising candidates within 5.0 seconds of time-
out compared to its predecessor while decreasing
the median value of execution time from 2.79 sec-
onds to 1.06 seconds.

1 Introduction
As our society grew reliant on software systems, the trustwor-
thiness of such systems became essential. One approach to
develop trustworthy systems is complete formal verification
using proof assistants. In a complete formal verification, we
specify the desired properties of our systems and prove that
our implementations are correct in terms of the specifications
using software tools, called proof assistants.

In many verification projects, proof by induction plays a
critical role. To facilitate proof by induction, modern proof
assistants offer sub-tools, called tactics. For example, Is-
abelle [Nipkow et al., 2002] comes with the induct tac-
tic. Using the induct tactic, human proof authors can apply
proof by induction simply by passing appropriate arguments
instead of manually developing induction principles. When
choosing such arguments, proof engineers have to answer the
following three questions:

• On which terms do they apply induction?

• Which variables do they pass to the arbitrary field
to generalise them?

• Which induction rule do they pass to the rule field?

For example, Program 1 defines the append function (@)
and two reverse functions (rev1 and rev2) and presents
two ways to prove their equivalence by applying the induct
tactic. Note that [], #, and [x] represent the empty list, the
list constructor, and the syntactic sugar for x # [], respec-
tively.

Program 1 Equivalence of two reverse functions
@ :: α list ⇒ α list ⇒ α list
[] @ ys = ys

| (x # xs) @ ys = x # (xs @ ys)

rev1 :: α list ⇒ α list
rev1 [] = []

| rev1 (x # xs) = rev1 xs @ [x]

rev2 :: α list ⇒ α list ⇒ α list
rev2 [] ys = ys

| rev2 (x # xs) ys = rev2 xs (x # ys)

theorem rev2 xs ys = rev1 xs @ ys
apply(induct xs ys rule: rev2.induct)

by auto

theorem rev2 xs ys = rev1 xs @ ys
apply(induct xs arbitrary: ys) by auto

The first proof script applies computation induction by
passing rev2.induct to the rule field. rev2.induct
is a customised induction rule, which Isabelle automatically
derives from the definition of rev2. The subsequent appli-
cation of auto discharges all sub-goals produced by this in-
duction.

The second proof script applies structural induction on xs
while generalising ys. This application of structural induc-
tion results in the following base case and induction step:

base case: rev2 [] ys = rev1 [] @ ys
induction step:
(∀ys. rev2 xs ys = rev1 xs @ ys) −→
rev2 (a # xs) ys = rev1 (a # xs) @ ys

where ∀ and −→ represent the universal quantifier and im-
plication, respectively. Using the associative property of @,
the subsequent application of auto firstly transformed the
induction step to the following intermediate goal internally:

(∀ys. rev2 xs ys = rev1 xs @ ys) −→
rev2 xs (a # ys) = rev1 xs @ (a # ys)

Since ys was generalised in the induction hypothesis, auto
proved rev2 xs (a # ys) = rev1 (xs @ (a # ys))
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by considering it as a concrete case of the induction hypoth-
esis. If we remove ys from the arbitrary field, the sub-
sequent application of auto leaves the induction step as fol-
lows:
rev2 xs ys = rev1 xs @ ys −→
rev2 xs (a # ys) = rev1 xs @ (a # ys)

In other words, auto cannot make use of the induction hy-
pothesis since the conclusion of induction step share the same
ys. Experienced human researchers can judge that this appli-
cation of the induct tactic was not appropriate. However,
it is also true that this induction step is still provable. For this
reason, counter-example finders, such as Nitpick [Blanchette
and Nipkow, 2010] and Quickcheck [Bulwahn, 2012], cannot
detect that this induct tactic without generalisation is not
appropriate for this problem. This is why engineers still have
to carefully examine inductive problems to answer the afore-
mentioned three questions when using the induct tactic.

This issue is not specific to Isabelle: other proof assis-
tants, such as Coq [The Coq development team, 2021], HOL4
[Slind and Norrish, 2008], and HOL Light [Harrison, 1996],
offer similar tactics for inductive theorem proving, and it is
human engineers who have to specify the arguments for such
tactics. This issue is not trivial either: in a summary pa-
per from 2005, Gramlich listed generalisation as one of the
main problems and challenges of inductive theorem proving
while predicting that substantial progress in inductive theo-
rem proving will take time due to the enormous problems and
the inherent difficulty of inductive theorem proving [Gram-
lich, 2005].

Previously, we built smart induct, which suggests ar-
guments of the induct tactic in Isabelle/HOL. Our evalu-
ation showed that smart induct predicts on which vari-
ables Isabelle experts apply the induct tactic for some in-
ductive problems. Unfortunately, smart induct has the
following limitations:

L1. It tends to take too long to produce recommendations.
L2. It cannot recommend induction on compound terms or

induction on multiple occurrences of the same variable.
L3. It is bad at predicting variable generalisations.
L4. Its evaluation is based on a small dataset with 109 induc-

tive problems.

We overcame these problems with sem ind, a new rec-
ommendation tool for the induct tactic. Similarly to
smart induct, sem ind suggests what arguments to pass
to the the induct tactic for a given inductive problem. Our
overall contribution is that

we built a system that predicts how one should
apply proof by induction in Isabelle/HOL both
quickly and accurately.

Even though we built sem ind for Isabelle/HOL, our ap-
proach is transferable to other proof assistants based on tac-
tics: no matter what proof assistants we use, we need an archi-
tecture that aggressively removes less promising candidates
to address L1 (presented in Section 2), a procedure to con-
struct promising induction candidates without missing out too
many good ones to address L2 (presented in Section 3), and

goal

Step 1: syntax-directed candidate construction

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics
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Step 5: rank tactics using SeLFiE heuristics for generalisation

Step 4: construct generalisation variables
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Figure 1: The overview of sem ind.

domain-agnostic heuristics that analyse not only the syntactic
structures of inductive problems but the definitions of relevant
constants to address L3 (presented in Section 4). Finally, Sec-
tion 5 justifies our claims through extensive evaluations based
on 1095 inductive problems, addressing L4.

2 The Overall Architecture
Figure 1 illustrates the overall architecture of sem ind, con-
sisting of 5 steps to produce and select candidate tactics as
follows.

Step 1. sem ind produces a set of sequences of induc-
tion terms and induction rules for the induct tactic from
a given inductive problem. The aim of this step is to produce
a small number of candidates intelligently, so that it covers
most promising sequences of induction terms and induction
rules while avoiding a combinatorial blowup. We expound
the algorithm to achieve this goal in Section 3.

Step 2. sem ind applies the induct tactic with the se-
quences of arguments produced in Step 1 to discard less
promising candidates. sem ind decides a sequence of ar-
guments is unpromising if the sequence satisfies any of the
following conditions:

• the induct tactic fails with an error message, or

• one of the resulting intermediate goals is identical to the
original goal itself.

Step 3. sem ind applies 36 pre-defined heuristics written
in SeLFiE [Nagashima, 2020a], which we explain in Section
4 using our running example. These heuristics judge the va-
lidity of induction terms and induction rules with respect to
the proof goal and the relevant definitions. Each heuristic is
implemented as an assertion on inductive problems and ar-
guments of the induct tactic, and each assertion is tagged
with a value. If an assertion returns True for a sequence of
arguments, sem ind gives the tagged value to the sequence.
sem ind sums up such points from the 36 heuristics to com-
pute the score for each sequence. Based on these scores,
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Figure 2: The user-interface of sem ind.

sem ind sorts sequences of arguments from Step 2 and se-
lects the five most promising sequences for further process-
ing.

Step 4. After deciding induction terms and induction rules
for the induct tactic in Step 3, sem ind adds arguments
for the arbitrary field to the sequences of arguments passed
from Step 3. Firstly, sem ind collects free variables in the
proof goal that are not induction terms for each sequence
from Step 3. Then, it constructs the powerset of such free
variables and uses each set in the powerset as the arguments to
the arbitrary field of the induct tactic. For example, if
sem ind receives (induct xs) from Step 3 for our run-
ning example of list reversal, it produces {{}, {ys}} as
the powerset because xs and ys are the only free variables in
the goal and xs appears as the induction term. This powerset
leads to the following two induct tactics: (induct xs),
and (induct xs arbitrary:ys).

Step 5. For each remaining sequence, sem ind applies 8
pre-defined SeLFiE heuristics to judge the validity of general-
isation. Again, each heuristic is tagged with a value, which is
used to compute the final score for each candidate: for each
sequence, sem ind adds the score from the generalisation
heuristics to the score from Step 3 to decide the final score for
each sequence. Based on these final scores, sem ind sorts
sequences of arguments from Step 5 and presents the 10 most
promising sequences in the Output panel of Isabelle/jEdit, the
default proof editor for Isabelle/HOL [Wenzel, 2012].

We developed sem ind entirely within the Isabelle
ecosystem without any dependency to external tools. This
allows for the easy installation process of sem ind: to use
sem ind, users only have to download the relevant Isabelle
files from our public GitHub repository1 and install sem ind
using the standard Isabelle command. The seamless integra-
tion into the Isabelle proof language, Isar [Wenzel, 2002], lets
users invoke sem ind within their ongoing proof develop-
ment and copy a recommended induct tactic to the right
location with one click as shown in Figure 2.

3 Syntax-Directed Candidate Construction
In general, the induct tactic may take multiple induction
terms and induction rules in one invocation. However, it is
rarely necessary to pass multiple induction rules to the rule
filed. Therefore, sem ind passes up-to-one induction rule to
the induct tactic.

1https://github.com/data61/PSL

On the other hand, it is often necessary to pass multiple
induction terms to the induct tactic, and the order of such
induction terms is important to apply the induct tactic ef-
fectively. Moreover, it is sometimes indispensable to pass the
same induction term multiple times to the induct tactic, so
that each of them corresponds to a distinct occurrence of the
same term in the proof goal. What is worse, induction terms
do not have to be variables: they can be compound terms such
as function applications.

Enumerating all possible sequences of induction terms
leads to a combinatorial explosion. To avoid such combina-
torial explosion, sem ind produces sequences of induction
terms and induction rules taking a syntax-directed approach,
which traverses the syntax tree representing the proof goal
while collecting plausible sequences of induction terms and
rules as follows.

Step 1-A. The collection starts at the root node of the syntax
tree with an empty set of sequences of induction arguments.

Step 1-B. If the current node is a function application,
sem ind takes arguments to the function, produces a set
of lists of such arguments while preserving their order.
This set of lists represents candidates for induction terms.
If the function in this function application is a constant
with a relevant induction rule stored in the proof context,
sem ind produces candidate induct tactics with and with-
out this rule for the rule field. For example, if the cur-
rent node is rev2 xs ys, Step 1-B produces (induct
xs) and (induct xs ys rule:rev2.induct), as
well as other candidates such as (induct xs ys) and
(induct xs rule:rev2.induct).

Step 1-C. If any sub-terms of the current node is a com-
pound term, sem ind moves down to such sub-terms in the
syntax tree and repeats S1-b to collect more candidates for
induction arguments.

Step 1-D. sem ind finishes Step 1 when it reaches the leaf
nodes in all branches of the syntax tree.

This syntax-directed argument construction avoids a com-
binatorial explosion at the cost of missing out some effective
sequences of induction arguments. One notable example is
the omission of simultaneous induction, which is essential to
tackle inductive problems with mutually recursive functions.
Our evaluation results in Section 5 show that despite the omis-
sion of such cases sem ind manages to recommend correct
induction arguments for most of the cases that appear in day-
to-day theorem proving.

In principle, this smart construction of candidate induct
tactics ignores handcrafted induction rules: in Step 1-B
sem ind collects induction rules derived automatically by
Isabelle when defining relevant functions. For example,
sem ind picks up rev2.induct when seeing rev2 in
our running example since rev2.induct is an induction
principle Isabelle automatically derived when defining rev2.
This constraint is unavoidable since we cannot predict what
induction rules proof engineers will manually develop in the
future for problem domains that may not even exist yet.

The notable exceptions to this principle are induction rules
manually developed in Isabelle’s standard library: in Step 1-B
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rev2 :: α list ⇨ α list ⇨　α list ⇨ 
  rev2 [ ]                = ys 
| rev2 ( x # xs ) ys = rev2 xs ( x # ys )  

theorem rev2 xs ys = rev1 xs @ ys 
  apply ( induct xs arbitrary: ys ) by auto

May I generalise ys, which appears 
as the second argument of rev2?

Yes. You may do so because the 
second argument changes from the 
left-hand side to the right-hand side 
in the second clause defining rev2.

} Program 2

} Program 3

Program 2

Program 3

Figure 3: Definition-aware generalisation heuristic as a dialogue.

Program 2 Syntactic analysis for generalisation in SeLFiE
∀ arb term : term ∈ arbitrary_term.
∃ f term : term.
∃ f occ : term_occ ∈ f term.
∃ arb occ ∈ arb term.
∃ generalise nth : number.
is_or_below_nth_argument_of
(arb occ, generalise nth, f occ)

∧
∃def
(f term,
generalise_nth_argument_of,
[generalise nth, f term])

the smart construction algorithm collects some manually de-
veloped induction rules from the standard library if the rules
seem to be relevant to the inductive problem at hand. This
optimisation is reasonable: some concepts in the standard li-
brary, such as lists and natural numbers, are used in many
projects and have useful induction rules handcrafted by Is-
abelle experts.

4 Induction and Generalisation Heuristics
We now have a closer look at heuristics used in Step 3
and Step 5. To produce accurate recommendations quickly,
heuristics for sem ind have to satisfy the following two cri-
teria.

C1: The heuristics should be applicable to a wide range of
problem domains, some of which do not exist yet.

C2: They should be able to analyse not only the syntactic
structures of the inductive problems at hand but also the
definitions of relevant constants in terms of how such
constants are used within the inductive problems.

To satisfy the above criteria, we choose SeLFiE [Na-
gashima, 2020a] as our implementation language to encode
heuristics. SeLFiE is is a meta-language to encode heuris-
tics for inductive theorem proving as assertions. A SeLFiE

Program 3 Definitional analysis for generalisation in SeLFiE
generalise_nth_argument_of :=
λ [generalise nth, f term].
∃ lhs occ : term_occ.
is_left_hand_side (lhs occ)
∧
∃ nth param on lhs : term_occ.
is_nth_argument_of
(nth param on lhs, generalise nth,
lhs occ)

∧
∃ nth param on rhs : term_occ.
¬ are_of_same_term
(nth param on rhs, nth param on lhs)

∧
∃ f occ on rhs : term_occ ∈ f term.
is_nth_argument_of
(nth param on rhs,
generalise nth,
f occ on rhs)

assertion takes a pair of arguments to the induct tactic and
an inductive problem with relevant definitions. The assertion
should return True if the choice of argument of the induct
tactic is compatible with the heuristic.

The exact definitions of our 44 heuristics are not informa-
tive or possible due to the page limit. Therefore, instead of
presenting each heuristic, this section introduces one sim-
ple generalisation heuristic written in SeLFiE to demonstrate
how we address the above two criteria using SeLFiE.

Program 2 and 3 define the following generalisation heuris-
tic introduced by Nipkow et al.[Nipkow et al., 2002]2:

(Variable generalisation) should not be applied
blindly. It is not always required, and the addi-
tional quantifiers can complicate matters in some
cases. The variables that need to be quantified are
typically those that change in recursive calls.

Figure 3 illustrates how this heuristic justifies the general-
isation of ys in our running example as an informal dialogue
between Program 2 and Program 3. In this dialogue, Program
2 analyses the syntactic structure of the proof goal in terms
of the arguments of the induct tactic, whereas Program 3
analyses the definition of rev2 in terms of how rev2 is used
in the goal. Note that Program 2 and Program 3 realise this
dialogue through a definitional quantifier, ∃def . With this di-
alogue in mind, we now formally interpret the two programs
for our running example.

Program 2 checks for all generalised variable, arb term, if
there exists a function, f term, its occurrence, f occ, an oc-
currence of the generalised variable, arb occ, and a natural
number, generalise nth, that satisfy the conjunction. Since
our running example has only one generalised variable, ys,
if we choose

2In this explanation we simplified the heuristic to focus on
the essence of SeLFiE. The corresponding heuristic we used for
sem ind involves optimisations and handling of corner cases.
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• rev2 for f term,

• the only occurrence of rev2 in the proof goal for f occ,

• the occurrence of ys on the left-hand side of the equa-
tion in the proof goal for arb occ,

• 2 for generalise nth,

we can satisfy the first conjunct for all arb terms because in
the proof goal ys appears as the second argument of the only
occurrence of rev2.

In the second conjunct, Program 2 uses ∃def to ask Pro-
gram 3 if there exists a clause defining rev2 that satis-
fies the condition specified in Program 3. Formally speak-
ing, Program 3 examines if there is a term occurrence,
nth param on lhs, such that nth param on lhs is the gener-
alise nth argument on the left-hand side in the equation defin-
ing f term, but an occurrence of f term on the right-hand side
has a different term for its second argument.

In the second clause defining rev2, the second argument
of rev2 is ys on the left-hand side, while the second ar-
gument of rev2 is x#ys on the right-hand side. There-
fore, Program 3 returns True to ∃def in Program 2, with
which Program 2 confirms that the candidate arguments of
the induct tactic satisfy Nipkow’s heuristic.

Attentive readers may have noticed that Program 2 and
Program 3 satisfy the aforementioned two criteria. They sat-
isfy C1 because they refer to problem specific constants and
arguments, such as rev2 and ys, abstractly using quanti-
fiers, so that they can be applicable to other inductive prob-
lems. They also satisfy C2 because Program 3 analyses the
definitions of relevant constants, such as rev2, while Pro-
gram 2 analyses the syntactic structures of the problem. This
is why sem ind achieves higher coincidence rates compared
to its predecessor, smart induct [Nagashima, 2020b], re-
ported in Section 5.

In total, we implemented 44 heuristics in SeLFiE. 36
of them are induction heuristics and 8 of them are gen-
eralisation heuristics. We adopted some heuristics from
smart induct, and we newly implemented others based
on literature and our expertise. As discussed above, SeLFiE
allows us to encode heuristics that transcend problem do-
mains using quantifiers. At the same time, however, some ba-
sic concepts, such as lists, sets and natural numbers, appear
in a wide range of verification projects. Therefore, we de-
veloped 20 SeLFiE heuristics that explicitly refer to concrete
constants or manually derived induction rules from the stan-
dard library to improve the accuracy of recommendations for
problems involving such commonly used concepts. Unlike
other parts of this paper, these 20 heuristics involve expertise
specific to Isabelle/HOL.

5 Evaluation
We evaluated sem ind against smart induct. Our focus
is to measure the accuracy of recommendations and execution
time necessary to produce recommendations. All evaluations
are conducted on a MacBook Pro (15-inch, 2019) with 2.6
GHz Intel Core i7 6-core memory 32 GB 2400 MHz DDR4.

Unfortunately, it is, in general, not possible to decide
whether a given application of the induct tactic is right for

tool top 1 top 3 top 5 top 10
sem ind 38.2% 59.3% 64.5% 72.7%

smart induct 20.1% 42.8% 48.5% 55.3%

Table 1: Overall coincidence rates within 5.0 seconds of timeout.

tool top 1 top 3 top 5 top 10
sem ind 54.5% 63.6% 72.7% 72.7%

smart induct 0.0% 0.0% 0.0% 9.1%

Table 2: Coincidence rates for Nearest Neighbors.thy.

a given problem. In particular, even if we can finish a proof
search after applying the induct tactic, this does not guar-
antee that the arguments passed to the induct tactic are a
good choice. For example, it is possible to prove our motivat-
ing example by applying (induct ys); however, the nec-
essary proof script following this application of the induct
tactic becomes unnecessarily lengthy.

Therefore, we adopt coincidence rates as the surrogate
for success rates to approximate the accuracy of sem ind’s
recommendations: we measure how often recommendations
of sem ind coincide with the choice of human engineers.
Since there are often multiple equally valid sequences of in-
duction arguments for a given inductive problem, we should
regard coincidence rates as conservative estimates of true suc-
cess rates.

As our evaluation target, we use 22 Isabelle theory files
with 1,095 applications of the induct tactic from the
Archive of Formal Proofs (AFP) [Klein et al., 2004]. The
AFP is an online repository of formal proofs in Isabelle/HOL.
Each entry in the AFP is peer-reviewed by Isabelle experts
prior to acceptance, which ensures the quality of our tar-
get theory files. Therefore, if sem ind achieves higher
coincidence rates for our target theory files, we can say
that sem ind produces good recommendations for many
problems. To the best of our knowledge, this is the most
diverse dataset used to measure recommendation tools for
proof by induction. For example, when Nagashima evalu-
ated smart induct they used only 109 invocations of the
induct tactic from 5 theory files, all of which are included
in our dataset.

5.1 Coincidence Rates within 5.0 Seconds
Table 1 shows coincidence rates of both sem ind and
smart induct within 5.0 seconds of timeout.

For example, the coincidence rate of sem ind is 38.2%
for top 1. This means that the sequences of induction argu-
ments used by human researchers appear as the most promis-
ing sequences recommended by sem ind for 38.2% of the
uses of the induct tactic. On the other hand, the coin-
cidence rate of smart induct is 20.1% for top 1. This
means that sem ind achieved a 90.0% increase of the co-
incidence rate for the most promising candidates. Over-
all, Table 1 indicates that sem ind consistently outperforms
smart induct when they can suggest multiple sequences.

We leave the coincidence rates for each theory file in
the accompanying technical appendix [Nagashima, 2021] but
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tool 0.2s 0.5s 1.0s 2.0s 5.0s
sem ind 8.8% 24.7% 47.8% 69.8% 86.8%
smart 0.0% 3.5% 16.9% 38.3% 70.2%

Table 3: Return rates for five timeouts.

present coincidence rates for a representative theory file in Ta-
ble 2. This theory file contains 11 proofs by induction, many
of which involve generalisation. Previously, we reported low
coincidence rates of smart induct for this file and con-
cluded that we could not achieve higher rates because of the
domain-specific language we used to encode heuristics [Na-
gashima, 2020b]: this language, called LiFtEr [Nagashima,
2019a], did not allow us to analyse definitions of relevant con-
stants, even though such definitions often carry the essential
information to decide what variables to generalise.

As shown in Table 2, our evaluation confirmed low coinci-
dence rates of smart induct for this file but showed sig-
nificantly higher rates of sem ind. That is, sem ind man-
aged to predict experts’ use of generalisation accurately since
sem ind uses SeLFiE to analyse the definitions of relevant
constants as shown in Section 4.

5.2 Return Rates for 5 Timeouts
sem ind achieves the higher accuracy by analysing not only
the syntactic structures of inductive problems but also the
definitions of constants relevant to the problems. Inevitably,
this requires larger computational resources: the SeLFiE in-
terpreter has to examine not only the syntax tree represent-
ing proof goals but also the syntax trees representing the
definitions of relevant constants. However, thanks to the
syntax-directed candidate construction algorithm presented
in Section 3 and aggressive pruning strategy presented in
Section 2, sem ind provides recommendations faster than
smart induct does.

This performance improvement is presented in Table 3,
which shows how often sem ind and smart induct re-
turn recommendations within certain timeouts. For example,
the return rate of sem ind is 8.8% for 0.2 seconds. This
means that sem ind returns recommendations for 8.8% of
proofs by induction within 0.2 seconds. On the other hand,
the return rate of smart induct is 0.0% for 0.2 seconds.

Table 3 shows that for all theory files sem ind produces
more recommendations than smart induct does for all
timeouts specified in this evaluation, proving the superior-
ity of sem ind over smart induct in terms of the exe-
cution time necessary to produce recommendations. In fact,
the median values of execution time for these 1,095 prob-
lems are 1.06 seconds for sem ind and 2.79 seconds for
smart induct. That is to say, sem ind achieved 62%
of reduction in the median value of execution time.

6 Related Work
Boyer and Moore invented the waterfall model [Moore, 1973]
for inductive theorem proving for a first-order logic on Com-
mon Lisp [Jr., 1982]. In the original waterfall model, a prover
tries to apply any of the following six techniques: simplifi-
cation, destructor elimination, cross-fertilization, generalisa-

tion, elimination of irrelevance, and induction to emerging
sub-goals until it solves all sub-goals.

The most well-known prover based on the waterfall model
is ACL2 [Moore, 1998]. To decide how to apply induction,
ACL2 computes a score, called hitting ratio, based on a fixed
formula [Boyer and Moore, 1979; Moore and Wirth, 2013] to
estimate how good each induction scheme is. Instead of com-
puting a hitting ratio, we use SeLFiE to encode our induction
heuristics as assertions. While ACL2 produces many induc-
tion schemes and computes the corresponding hitting ratios,
sem ind produces a small number of promising sequences
of induction terms and rules.

For Isabelle/HOL, we developed a proof strategy language,
PSL [Nagashima and Kumar, 2017]. PSL’s interpreter dis-
charges easy induction problems by conducting expensive
proof searches, and its extension to abductive reasoning tries
to identify auxiliary lemmas useful to prove inductive prob-
lems [Nagashima and Parsert, 2018]. While our abductive
reasoning mechanism took a top-down approach, Johansson
et al. took a bottom-up approach [Johansson et al., 2014]
based on the idea of theory exploration.

There are ongoing attempts to extend saturation-based su-
perposition provers with induction: Cruanes presented an ex-
tension of typed superposition that can perform structural in-
duction [Cruanes, 2017], while Reger et al. incorporated
lightweight automated induction [Reger and Voronkov, 2019]
to the Vampire prover [Kovács and Voronkov, 2013] and
Hajdú et al. extended it to cover induction with generalisa-
tion [Hajdú et al., 2020]. A straightforward comparison to
their approaches is difficult as their provers are based on less
expressive logics and different proof calculi. However, we ar-
gue that one advantage of sem ind over their approaches is
that sem ind never introduces axioms that risk the consis-
tency of Isabelle/HOL. Furthermore, our evaluation consists
of a wider range of problem domains written by experienced
Isabelle users based on their diverse interests: Hajdú’s evalu-
ation involved a number of inductive problems, but the prob-
lem domains were limited to lists, natural numbers, and trees.

Similarly to sem ind, TacticToe [Gauthier et al., 2017;
Gauthier et al., 2021] for HOL4, Tactician [Blaauwbroek
et al., 2020] for Coq, and PaMpeR [Nagashima and He,
2018] for Isabelle are meta-tactic tools seamlessly integrated
in proof assistants’ ecosystems; however, none of them log-
ically analyse inductive problems or predict arguments of
the induct tactic accurately. Unlike these tools, sem ind
presents accurate recommendations without relying on statis-
tical machine learning.

Despite the growing interest in deep learning for theo-
rem proving, [Kaliszyk et al., 2017; Bansal et al., 2019;
Yang and Deng, 2019; Jakubuv et al., 2020; Paliwal et
al., 2020; Chvalovský, 2019; Sekiyama and Suenaga, 2018;
Piotrowski and Urban, 2020; Loos et al., 2017; Li et al.,
2021], we mindfully avoided deep learning since we have
only a limited number of inductive problems available. In-
stead of deep learning, we used SeLFiE’s quantifiers to en-
code our heuristics in a domain-agnostic style. To the best of
our knowledge, no project based on deep learning has man-
aged to predict arguments to the induct tactic accurately.
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7 Conclusion
We presented sem ind, a recommendation tool for proof by
induction. sem ind constructs candidate induct tactics
for a given inductive problem while avoiding combinatorial
explosion, and it selects promising candidates by filtering out
unpromising candidates and scoring remaining ones. To give
scores to each remaining candidate, we encoded 36 heuristics
in SeLFiE to decide on which terms and with which rules we
should apply the induct tactic, as well as 8 SeLFiE heuris-
tic to decide which variables to generalise.

Our evaluation based on 1,095 inductive problems from
22 theory files showed that compared to the existing tool,
smart induct, sem ind achieves a 90.0% increase of the
coincidence rate from 20.1% to 38.2% for the most promising
candidate, while achieving a 62.0% decrease of the median
value of execution time. In particular, sem ind surpassed
the accuracy of the existing tool by a wide margin for induc-
tive problems involving variable generalisation.

Currently, sem ind uses manually specified weights for
heuristics. It remains as our future work to optimise such
weights using evolutionary computation [Nagashima, 2019b]
and to integrate sem ind into a larger AI tool for Is-
abelle/HOL [Nagashima, 2020c].
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