
1

Fast and Slow Enigmas and Parental Guidance

Zarathustra A. Goertzel1, Karel Chvalovský1, Jan Jakub̊uv1,2, Miroslav
Oľsák2, and Josef Urban1

1 Czech Technical University in Prague, Prague, Czech Republic
2 University of Innsbruck, Austria

Abstract. We describe several additions to the ENIGMA system that
guides clause selection in the E automated theorem prover. First, we
significantly speed up its neural guidance by adding server-based GPU
evaluation. The second addition is motivated by fast weight-based rejec-
tion filters that are currently used in systems like E and Prover9. Such
systems can be made more intelligent by instead training fast versions
of ENIGMA that implement more intelligent pre-filtering. This results
in combinations of trainable fast and slow thinking that improves over
both the fast-only and slow-only methods. The third addition is based on
”judging the children by their parents”, i.e., possibly rejecting an infer-
ence before it produces a clause. This is motivated by standard evolution-
ary mechanisms, where there is always a cost to producing all possible
offsprings in the current population. This saves time by not evaluating
all clauses by more expensive methods and provides a complementary
view of the generated clauses. The methods are evaluated on a large
benchmark coming from the Mizar Mathematical Library, showing good
improvements over the state of the art.

1 Introduction: The Fast and The Smart

Throughout the history of automated theorem proving, there have been two very
different approaches to strengthening automated theorem provers (ATPs). The
first one (the fast) relies on better engineering, such as improving the indexing
for inference and reduction rules and on optimized low-level implementations.
The gains achieved in this way can be quite high [9, 15,22,28,31,38].

The second approach (the smart) relies on advanced strategies and heuris-
tics for guiding the proof search. This includes methods using extensive previous
knowledge, e.g., various kinds of symbolic machine learning, such as the hints
method in Otter [37] and Prover9 [19], and its watchlist [26] and proofwatch [6]
variants implemented in E [29,30]. With the recent advent of statistical machine
learning (ML), a number of knowledge-based ATP-guiding methods have been
created [3,10,11,17]. This is done by compiling (extracting, compressing, gener-
alizing) the previous knowledge into statistical ML predictors (models) that are
then used to predict the usefulness of inference steps in the proof search.

The smart approaches, while potentially sophisticated and AI-motivated,
may incur prohibitively high costs in their prediction modules, in particular
when naively implemented [21, 36]. This can make them inferior in practice to
faster alternative approaches, such as various kinds of randomization [25] and



building of portfolios of complementary fast strategies [13, 27, 35]. This issue is
getting increasingly important as deep learning (DL) is used for ATP guidance,
sometimes with large cloud-based DL-predictors running on specialized hardware
that hides the amount of resources used. It also complicates rigorous comparisons
in established ATP competitions such as CASC/LTB [32,33].

Another issue related to the use of expensive predictors can be summarized
as the explore-exploit tradeoff introduced in reinforcement learning research [5].
In short, running an ATP guided by a 100-times slower predictor that is only
slightly better (possibly due to insufficient previous data for learning) will not
only typically solve fewer problems due to much more expensive backtracking
but also generate much less data for training the predictor in the next iteration.
Hence, given a global time limit allowing many proving/learning iterations over
a large set of related problems in a realistic problem-solving setup such as CASC
LTB, a faster predictor will in the same time generate much more data to learn
from. This in turn often leads to better performance: a slightly weaker ML system
trained on much more data will often ultimately outperform a slightly stronger
ML system trained on much less data.

1.1 Contributions

In this work we develop combinations of the fast(er) and smart(er) approaches in
the context of the learning-guided ENIGMA framework. After giving a summary
of ENIGMA in Section 2, Section 3 introduces our new methods.1

First, Section 3.1 describes a large increase in the speed of neural guidance
in ENIGMA. We add an efficient server-based evaluation that uses dedicated
GPUs instead of a CPU. When using four commodity GPU cards, this speeds
up the neural evaluation of the clauses about four times in real time.

Section 3.2 describes the second addition, motivated by fast weight-based
rejection filters used in systems such as E and Prover9. Such methods can be
replaced by training fast predictors that implement more intelligent pre-filtering.
In the context of ENIGMA, fast(er) is easy to implement by variously parame-
terized predictors based on gradient-boosted decision trees (GBDTs). Slow(er)
models are in those based on graph neural networks (GNNs).

Section 3.3 describes the third addition based on ”judging the children by
their parents”, i.e., possibly rejecting an inference before it even produces a
clause. This grants the machine learning methods greater control of the proof
search and saves time by not evaluating all clauses by more expensive methods,
also providing a complementary view of the generated clauses.

In Section 4 we describe the experimental setting and a large evaluation
corpus based on the Mizar Mathematical Library and its MPTP translation. We
also present our baseline methods there. Section 5 evaluates the new methods
and shows that even in relatively low time limits the methods provide good
performance improvements over the previous versions of ENIGMA.

1 The E and ENIGMA versions used in this paper can be found at https://github.c
om/ai4reason/enigma-gpu-server.

https://github.com/ai4reason/enigma-gpu-server
https://github.com/ai4reason/enigma-gpu-server


2 Saturation Proving and Its Guidance by ENIGMA

State-of-the-art automated theorem provers (ATP), such as E, Prover9, and
Vampire [20], are based on the saturation loop paradigm and the given clause
algorithm [24]. The input problem, in first-order logic (FOF), is translated into a
refutationally equivalent set of clauses, and a search for contradiction is initiated.
The ATP maintains two sets of clauses: processed (initially empty) and unpro-
cessed (initially the input clauses). At each iteration, one unprocessed clause is
selected (given), and all of the possible inferences with all the processed clauses
are generated (typically using resolution, paramodulation, etc.), extending the
unprocessed clause set. The selected clause is then moved to the processed clause
set. Hence the invariant holds that all the mutual inferences among the processed
clauses have been computed.

The selection of the “right” given clause is known to be vital for the success of
the proof search. The ENIGMA system [3, 7, 10–12, 14] applies various machine
learning methods for given clause selection, learning from a large number of
previous successful proof searches. The training data consists of clauses processed
during a proof search, labeling the clauses that appear in the discovered proof
as positive, and the other (thus unnecessary) processed clauses as negative.

The first ENIGMA [11] used fast linear classification [4] with hand-crafted
clause features based on symbol names, representing clauses by fixed-length nu-
meric vectors. Follow-up versions [3, 7, 12, 14] introduced context-based clause
evaluation and fast dimensionality reduction by feature hashing, and employed
Gradient Boosting Decision Trees (GBDTs), implemented by the XGBoost and
LightGBM systems [2, 18]), and Recursive Neural Networks (implemented in
PyTorch) as the underlying machine learning methods.

The latest version, ENIGMA Anonymous [10], abstracts from name-based
clause representations and provides the best results so far both with GBDTs
and Graph Neural Networks (GNNs) [1]. For GBDTs, clauses are again rep-
resented by fixed-length vectors based on syntax trees and anonymization is
achieved by replacing symbol names by their arities. Our GNN [23] represents
clauses by variable-length numeric tensors encapsulating syntax trees as graph
structures with symbol names omitted. ENIGMA-GNN evaluates new clauses
jointly in larger batches (queries) and with respect to a large number of already
selected clauses (context). The GNN predicts the collectively most useful subset
of the clauses in several rounds (layers) of message passing. This means that ap-
proximative inference rounds done by the GNN are efficiently interleaved with
precise symbolic inference rounds done inside E. The GBDT and GNN versions
have so far been used separately and only with CPU-based evaluation. In this
work, we add efficiently implemented GPU-based evaluation for the GNN and
start to use the two methods cooperatively.

3 Cooperative Filtering: Faster and Smarter

The set of generated clauses in saturation-style ATPs typically grows quadrati-
cally with the number of processed clauses. Each new given clause is combined



with all compatible previously processed clauses, followed by (possibly expen-
sive) evaluation of all newly generated clauses. In particular, the GNN predictors
typically incur a significant evaluation cost per clause. The quadratic growth
means that longer ENIGMA-GNN runs may get very slow.

To avoid large memory consumption and similar expensive evaluations in long
hint-based Prover9 runs (often taking several days) on the AIM problems [19],
Veroff has used weight-based filtering, discarding immediately clauses that reach
a certain weight limit. This often helps, but counterexamples are common, and
in practice, such schemes often need to be made more complicated.2 The three
methods that we introduce below are instead targeting this issue by using faster
learning-based filtering.

3.1 Fast GNN Evaluation Using a GPU Server

The main weakness of the GNN version of ENIGMA is its slow clause evaluation.
In our previous ENIGMA Anonymous experiments [10], we used GPUs for model
training, but during the proof search we evaluated the clauses on a single CPU
(per each E prover’s instance). This was partly to provide a fair comparison
with GBDTs which we also evaluate on a single CPU, but also to avoid large
start-up overheads when loading the neural models to a GPU and running with
low time limits. Here we instead develop a persistent multi-threaded GPU server
that evaluates clauses from multiple E prover runs using multiple GPUs.

The modification is as follows. During the proof search, after computing the
tensor representation of the newly generated clauses, an E Prover client sends
the tensors (in a JSON text format) over a network socket to a remote server.
The client then waits for the server response which provides the scores (GNN
evaluations) of the new clauses. This means that the clients are inactive for some
time and more of them are needed to saturate the CPUs on the machines (see the
detailed experimental discussion in Section 5.1). This is typically not a problem
due to many instances of E running with different premises and parameters
in hammering and CASC LTB scenarios, as well as in many iterations of the
learning/proving loop that attempt to solve harder and harder problems over a
large problem set.

The remote server, written in Python, is launched before the E clients, loading
the GNN model to the (multiple) GPUs in advance. Once the model is loaded
to the GPUs, the server accepts tensor queries on a designated port, evaluates
them on the GPUs, and sends the clause evaluations back to the clients. In
more detail, the server is parameterized by the number N (our default is 28) of
independent worker threads, the batch size b (our default is 8) and the waiting
time T (our default is 0.01s). The client queries are accumulated in a shared
queue that the N worker threads process. Each worker operates in two steps.
First, it checks the queue, and if it contains less than b queries, it waits for T

2 We thank Bob Veroff for explaining that this is done by gradually lowering the weight
limit inside a single longer Prover9 run, and by raising the initial weight limit and
slowing down the weight reduction scheme across multiple Prover9 runs.



seconds. Then it evaluates the first b queries on the queue, or less if there are not
enough of them available. Note that when the worker waits or evaluates queries,
other workers can process the queue.

The advantage is that the single GNN server amortizes the startup costs and
handles queries of many E prover clients and distributes them across multiple
GPUs. This means that much larger batches (containing clauses coming from
multiple clients) are typically loaded onto the GPUs, amortizing also the rela-
tively high cost of communication with the GPUs. This results in large real time
speed-ups over the CPU version, see Section 5.1. In our experiments, we run the
GPU server and the E clients on the same machine. Hence the network over-
head is low because the communication is done over a local loopback interface.
In the case of a remote connection, the architecture would benefit from data
compression and/or binary data formats to decrease the network overhead. See
Section 5.1 for the current average sizes of the data exchanged.

3.2 Best of Both Worlds: GNN with GBDT Filtering

While the GPU server evaluation provides a considerable speed up, the evalua-
tion of clauses on a GPU is still relatively costly compared to the GBDT clause
evaluation. Hence we develop the following combination of the two methods,
where the GBDT is used to pre-filter the clauses for the GNN.

In more detail, the set of clauses to be evaluated by the GNN is first evaluated
by a fast GBDT model.3 The GBDT model assigns a score between 0 and 1 to
each clause, and only the clauses with scores higher than a selected threshold are
sent to the GPU server for evaluation by the GNN. The clauses which are filtered
out by the GBDT model are assigned a very high weight inside E Prover, which
makes them unlikely to ever be selected for processing. This way we prevent E
from incorrectly reporting satisfiability when the good clauses run out.

Several requirements must be met for this filtering to be effective. First, the
GBDT filtering model must be small enough so that the evaluation is fast, yet
precise enough so that the more important clauses are not mistakenly filtered
out too often. Second, the score threshold must be properly fine-tuned, which
typically requires experimental grid search on smaller samples. Experiments with
a GBDT pre-filtering for a GNN are presented in Section 5.2.

3.3 Parental Guidance: Pruning the Given Clause Loop

We define (clausal) parental guidance as clause evaluation based on the features
of the parents of a clause rather than on the clause itself. Such fast rejection filters
often help: in nature, mating is typically highly restricted by various features of
parents (e.g., their age, appearance, finances, etc.). Similarly, it does not often
happen that clauses from very different parts of mathematics (e.g., differential
geometry and graph theory) need to be resolved.

3 This feature is implemented for the LightGBM models, which seem more easily
tunable for such tasks.



Parental guidance can be seen as “just another filter” of the generated clauses,
but its motivation is more radical: The “good old”4 given clause loop [24] insists,
for completeness reasons, on performing all possible inferences between the pro-
cessed clauses and the given clause, typically leading to a quadratic growth of
the set of generated clauses. However, if we had perfect information about the
proof, this would be wasteful and could be replaced by just performing the infer-
ences needed for the proof in each given clause loop. With parental guidance, we
instead propose to prune the given clause loop in a soft way: a trained predic-
tor judges the likelihood of the particular inference being needed for the proof.
When an inference is deemed useless, the clause is still generated but immedi-
ately frozen so that it does not have to be evaluated by additional heuristics.

The parental guidance is implemented using GBDTs (our parental model),
and the filter is directly put inside E’s given clause loop as follows. When E selects
a given clause g, E uses term indexes to efficiently determine which clauses can
be combined with g to generate new clauses. After generating the clauses, E
performs simplifications, removes trivial clauses, evaluates the remaining clauses
with the clause evaluation functions, and inserts them into the unprocessed set.
The call to the parental model is executed after the clause generation and prior to
the simplifications. Clauses generated by paramodulation, which also implements
resolution in E, have two parents, and these are judged by the parental model.
Clauses whose parents are jointly scored below a chosen threshold are put into
the freezer set to avoid impairing the completeness of the proof search. Clauses
with good parents continue on to the unprocessed set. In case the unprocessed
set becomes empty, the frozen clauses are revived and treated as usual.

Note that a naive alternative way to implement parental guidance would be to
evaluate each given clause’s compatibility with all previously processed clauses.
This would, however, result in many unnecessary GBDT queries and evaluations.
Instead, our approach allows E’s indexing to find the typically much smaller set
of potential inferences and to limit the parental evaluation to them.5

There are various ways to represent the pair of parent clauses for the learning
of the parental model. In this work, we evaluate two methods:

1. Pfuse merges the feature vectors of the parent clauses into one vector, typi-
cally by simply adding the feature counts6

2. Pcat concatenates the feature vectors of the parent clauses to preserve their
information in full.

An interesting future alternative is to include the difference of the parents’ fea-
ture vectors in addition to their union and concatenation, which allows the
GBDT to choose the most informative features.
4 The given clause loop is almost 50 years old as of 2021.
5 The efficiency boost obtained by using intelligent indexing is analogous to the boost

obtained by using our structure-aware GNN for context-based neural clause selection
(Section 2) rather than off-the-shelf Transformer models. The latter would quadrati-
cally consider interactions of all symbols in the context and query clauses, decreasing
the evaluation speed by orders of magnitude, resulting in a very inefficient prover.

6 In some special cases of features, we instead take their maximum/minimum.



4 Experimental Setting and Baselines

4.1 Evaluation Problems and Training Data

All our experiments are performed7 on a large benchmark of 57 880 problems8

originating from the Mizar Mathematical Library (MML) [16] exported to first-
order logic by MPTP [34]. We make use of our ongoing extensive evaluation of
many AI/TP methods over this corpus9 that measures the overall improvement
on this large dataset over the last similar evaluation done in [16]. In these ex-
periments we have significantly extended our previously published results [10].10

Proofs of 73.5% (more than 40k) Mizar problems have been so far found by
learning-guided ATPs, and numerous GBDT and GNN models for ATP guid-
ance have been trained.

In that experiment, all Mizar problems11 are split (in a 90-5-5% ratio) into
3 subsets: (1) 52k problems for training, (2) 2896 problems for development,
and (3) 2896 problems for final evaluation (holdout). We use this split here, and
additionally we use a random subset of 5792 of the training problems to speed
up the training of various experimental methods.

4.2 Baseline ENIGMA Models

Out of the 52k training problems, we were previously able to prove more than
36k problems, obtaining varied numbers of proofs for each problem (ranging
from 1 to hundreds). On these 36k problems we train our baseline GBDT and
GNN predictors. To balance the contribution of different problems during the
training of the predictors, we randomly choose at most 3 proofs for every proved
training problem. This yields a set of about 100k proofs, denoted further as the
large (training) set. When limited to the 5792 random subset of the training
problems, this yields 11 748 proofs, denoted further as the small training set.

On the large set we train the first baseline predictor denoted by Dlarge. This
is a GBDT model (implemented by the LightGBM framework) trained using
the ENIGMA Anonymous clause representation (Section 2). The model consists
of 150 decision trees of depth 40 with 2048 leaves. This model was selected as
it performed best in our previous experiments with standard GBDTs, being
able to prove 1377 of the holdout problems using a 5 second limit per problem.
Additionally, we train another model Dsmall only on the small set of training
problems. The model Dsmall is a LightGBM model with 150 trees of depth 30
and with 9728 leaves. The training of Dlarge took around 27 minutes and the
training of Dsmall around 10 minutes, both on 30 CPUs. These are relatively low
and practical times compared to the training of neural networks.

7 On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
cores, 755 GB of memory, and 4 NVIDIA GeForce GTX 1080 Ti GPUs.

8 http://grid01.ciirc.cvut.cz/∼mptp/1147/MPTP2/problems small consist.tar.gz
9 https://github.com/ai4reason/ATP Proofs

10 The publication of this large evaluation is in preparation.
11 http://grid01.ciirc.cvut.cz/∼mptp/Mizar eval final split

http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
https://github.com/ai4reason/ATP_Proofs
http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split


We also train baseline GNN models on the same data, denoted Glarge and Gsmall

respectively. The training of Glarge for 45 epochs takes about 15 hours on the full
set of 100k proofs on a high-end NVIDIA V100 GPU card.12 It would likely
take days when training with CPUs only. We choose for the ATP evaluation the
(39th) snapshot that achieves both the best loss (0.2063) and the best weighted
accuracy (0.9147) on 5% of the data that we do not use for training. The training
of Gsmall for 100 epochs takes about 4 hours on the small set using the same GPU
card. We choose for the ATP evaluation the (56th) snapshot that achieves the
best loss (0.2988) on 5% of the data that we do not use for training. The weighted
accuracy on this set is 0.8685, which is also among the highest values.

In the evaluation we run all our baseline ENIGMA predictors in an equal
combination with a strong non-learning E strategy S (see Appendix A). This
means that the processed clauses are selected in (equal) turns by ENIGMA and
by S. This coop mode has typically worked better than the solo mode, where
only the ENIGMA predictor is doing the clause selection.

4.3 Training of the Parental GBDT Models

The training data for the parental guidance models are generated by running E
using either Dlarge or Glarge on the 52k training problems with a 30 second time
limit and by printing the derivation of all clauses generated during the proof
search.13 We considered the following two schemes to classify the good pairs of
parents and to generate the training data:

1. Pproof classifies parents of only the proof clauses as positive and all other
generated clauses as negative.

2. Pgiven classifies parents of all processed (selected) clauses as positive and the
unprocessed generated clauses as negative.

The rationale behind Pproof is that every non-proof clause should be pruned
if possible. The rationale behind Pgiven is that if an effective clause selection
strategy, such as Dlarge, predicted a clause to be useful, then it is probably worth
generating. However, such data may be confusing as it includes clauses that did
not contribute to the proof.

If a pair of parents produces both positive and negative clauses, we consider
the pair positive in our implementation. However, this does not happen very
often. Based on a survey on the small set labeled according to Pproof

fuse , 73% of the
problems have no conflict. There are 1519 parents of both positive and negative
clauses, 53 359 are positive, and 6 086 414 are negative. Under Pgiven

fuse , 9798 of
the parents are mixed, 854 778 are positive, and 5 178 592 are negative. In either
case, the primary learning task is to identify and prune as many negative clauses
as possible without filtering a necessary proof clause by mistake.

12 We use the same GNN hyper-parameters as in [10, 23] with the exception of the
number of layers that we increase here to 10.

13 Using E’s option “--full-deriv”.



One parameter to experimentally tune is the pos-neg ratio used in the GBDT
training: the ratio of positive and negative examples. The pos-neg ratio is 1:192
over the large Pproof

fuse data, which is more than ten times more than the ratio of the
training data for Dlarge and Glarge. Hence, reducing the pos-neg ratio by randomly
sampling negative examples could further boost the training performance.

The parental guidance models are trained using GBDTs. Trained models are
evaluated in combination with the GBDT or GNN clause evaluation heuristic
using either the Dlarge or Glarge model, see Section 5.3.

5 Evaluation of the New Methods

5.1 Speedup by Using a GPU Server

First we measure the speedup obtained by evaluating the ENIGMA GNN calls
on a separate GPU server. To avoid network latency and for a cleaner compar-
ison, we run both the clients (E/ENIGMA) and the GPU server on the same
machine equipped with four NVIDIA GeForce GTX 1080 GPU cards and 36
hyperthreading CPU cores. We configure the server to use all four GPU cards.
Its other important parameters are the number of worker threads and the batch
size. We experimentally set them to 28 and 8, and we use Glarge for all proof runs.

Comparison of the CPU-only and GPU-server versions is complicated by the
fact that the server-based GNN evaluations do not count towards the CPU time
taken by E, as reported by the operating system. Still, a comparison using the
CPU time is interesting and we include it, using 30 and 60 second CPU limits for
the CPU-only version, and a 30 second CPU limit for the client-server version.

Another way to compare the two is by using parallelization, i.e., running
many instances of E in parallel. In the client-server version the instances talk
to the GPU server simultaneously. We saturate the machine’s CPUs fully for
both versions, and run for approximately equal overall real time over the devel-
opment and holdout sets. This is roughly achieved by using 60s time limit with
70-fold parallelization for the CPU version, and 30s time limit with 160-fold
parallelization for the client/server version. The CPU version then takes about
27.5 minutes to finish on the 2896 problems, while the client-server takes about
34 minutes to finish. Table 1 compares the number of solved problems on the
development and holdout sets. The GPU server improves the performance on
the development resp. holdout sets by 9.5% resp. 11.5%.

We also compare the average number of generated clauses on the problems
that timed out in both versions. In the 60s CPU version it is 16 835, while in
the 30s client-server it is 63 305. This is a considerable speedup, achieved by
employing the additional custom hardware—our four GPU cards. The average
number of GNN queries in the 1358 problems that timed out in the 30s GPU
server runs is 243.8, and on average the communication with the GPU server took
155MB in a timed-out problem. A single GNN query took on average 637kB.



Table 1. Comparison of the CPU-only GNN ENIGMA with the client-server version
using GPUs. All runs are evaluating Glarge on the whole development (D) and holdout
(H) datasets. The percentage improvement is computed over the 60s CPU version that
corresponds more closely in real time to the client-server version. All runs use queries
of size 256 and contexts of size 768.

set model method time solved

D Glarge CPU 30 1311
D Glarge CPU 60 1380
D Glarge GPU 30 1511 (+9.5%)

set model method time solved

H Glarge CPU 30 1301
H Glarge CPU 60 1371
H Glarge GPU 30 1529 (+11.5%)

5.2 Evaluation of 2-phase ENIGMA

Small GBDT and Small GNN: In the first experiment we use the GBDT
and GNN predictors Dsmall and Gsmall trained on the small subset of the training
dataset.

We first do a grid search over the parameters on a smaller dataset of 300
development problems (see Table 9 in Appendix B for the full grid search).
Then we evaluate the best parameters on the development and holdout sets and
compare them with the standalone performance of Gsmall, which is the stronger
of the two baselines (Table 2). The best combined methods are then evaluated
also in 60s. This gives a relatively fair real-time comparison to the standalone
GNN, because the reported CPU times do not include the time taken by the
GPU server.14

Our best combined method solves (in real time) 10.4%, resp. 9.0%, more
problems on the development, resp. holdout, set than the standalone GNN. This
is a significant improvement, which will likely get even more visible with higher
time limits, because of the quadratic growth of the set of generated clauses. The
performance improvement over the standalone GBDT model is even larger.

Large GBDT and Small GNN: In the next experiment, we want to see how
much the training of the less expensive model (GBDT) on more data helps. I.e.,
we replace Dsmall with Dlarge and keep Gsmall. This has practical applications in
real time, because cheaper ML predictors such as GBDTs are faster to train
than more expensive ones such as the GNN. We again first do a grid search over
the parameters on a small dataset of 300 development problems (see Table 10
in Appendix B). Then we evaluate the best models on the development and
holdout sets and compare them with the standalone performance of Dlarge and
Gsmall (Table 3). The best combined methods are then again evaluated also in
60s, which makes it comparable in real time to the standalone GNN model.

Our best combined method solves (in CPU time) 7.1%, resp. 5.5%, more
problems on the development, resp. holdout, set than the standalone GBDT.
For the GNN, this is (in real time) 9.3% resp. 7.5%. These are smaller gains

14 We have made this estimate based on a comparison of real and CPU times done on
a set of problems that time out in both methods.



Table 2. Final evaluation of the best combination of Dsmall with Gsmall on the whole
development (D) and holdout (H) datasets.

set model thresh. time query context solved

D Gsmall - 30 256 768 1251
D Dsmall - 30 - - 1011
D Dsmall+Gsmall 0.01 60 512 1024 1381 (+10.4%)
D Dsmall+Gsmall 0.03 60 512 1024 1371 (+9.6%)
D Dsmall+Gsmall 0.03 30 512 1024 1341 (+7.2%)
D Dsmall+Gsmall 0.01 30 512 1024 1339 (+7.0%)

H Gsmall - 30 256 768 1277
H Dsmall - 30 - - 1002
H Dsmall+Gsmall 0.01 60 512 1024 1392 (+9.0%)
H Dsmall+Gsmall 0.03 60 512 1024 1387 (+8.6%)
H Dsmall+Gsmall 0.01 30 512 1024 1361 (+6.6%)
H Dsmall+Gsmall 0.03 30 512 1024 1353 (+6.0%)

Table 3. Final evaluation of the best combination of Dlarge and Gsmall on the whole
development (D) and holdout (H) datasets.

set model thresh. time query context solved

D Gsmall - 30 256 768 1251
D Dlarge - 30 - - 1397
D Dlarge+Gsmall 0.3 60 2048 768 1527 (+9.3%)
D Dlarge+Gsmall 0.3 30 2048 768 1496 (+7.1%)

H Gsmall - 30 256 768 1277
H Dlarge - 30 - - 1390
H Dlarge+Gsmall 0.3 60 2048 768 1494 (+7.5%)
H Dlarge+Gsmall 0.3 30 2048 768 1467 (+5.5%)



than in the previous Dsmall + Gsmall scenario, most likely because the stronger
predictor dominates here. Also note that the large query (2048) used in our
strongest model is typically diminished a lot by the GBDT pre-filter, resulting
in average query sizes after the GBDT pre-filtering of 256–512.

Large GBDT and Large GNN: Finally, we evaluate the large setting, using
the GBDT and GNN predictors Dlarge and Glarge trained on the full training
dataset. Again, we first do a grid search over the parameters on the small set of
300 development problems (Table 11 in Appendix B). Then we evaluate the best
parameters on the development and holdout sets, and we compare them with
the standalone performance of Dlarge and Glarge (Table 4). The improvements on
the development, resp. holdout, set is 9.1%, resp. 7.3%, in real time, and 6.9%,
resp. 4.8%, when using CPU time. The E auto-schedule solves in 30s (CPU time)
1020 of the holdout problems. Our strongest 2-phase method solves 1602 of these
problems in the same CPU time, i.e., 57.1% more problems.

Table 4. Final evaluation of the best combination of Dlarge and Glarge on the whole
development (D) and holdout (H) datasets.

set model thresh. time query context solved

D Glarge - 30 256 768 1511
D Dlarge - 30 - - 1397
D Dlarge+Glarge 0.1 60 1024 768 1648 (+9.1%)
D Dlarge+Glarge 0.1 30 1024 768 1615 (+6.9%)

H Glarge - 30 256 768 1529
H Dlarge - 30 - - 1390
H Dlarge+Glarge 0.1 60 1024 768 1640 (+7.3%)
H Dlarge+Glarge 0.1 30 1024 768 1602 (+4.8%)

5.3 Evaluation of the Parental Guidance Combined with Dlarge

The parameters for parental guidance models are explored via a series of grid
searches to reduce the number of combinations. Initially, we only useDlarge in con-
junction with the parental models. First, the training data classification schemes,
Pproof
fuse and Pgiven

fuse , are compared with a grid search over the pos-neg reduction
ratio. The best combination of reduction ratio and classification scheme is used
to perform a grid search over LightGBM parameters for Pfuse. Next, reduction
ratio and LightGBM parameter grid searches are done with the Pcat featuriza-
tion method data, starting with the best Pfuse parameters from the previous
experiments. Every model is evaluated with the same set of nine parental fil-
tering thresholds {0.005, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The grid searches
are done over the 300 problem development set and run for 30 seconds. On this
dataset, Dlarge solves 159 problems.



Pos-neg reduction ratio tuning (merge): The first grid search examines
the pos-neg reduction ratio denoted as ρ. Before the reduction, the average pos-
neg ratio for Pgiven

fuse is 1 : 9.2 and the average for Pproof
fuse is 1 : 191.8. We reduce

the pos-neg ratio to a given ρ by randomly sampling the negative examples on
a problem-specific basis. This means that the average pos-neg ratio over the
whole dataset is typically a bit smaller than ρ. For example, using ρ = 4 on the
Pproof
fuse results in an average of 3.95 times more negative than positive examples.

Both Pgiven
fuse and Pproof

fuse are tested using ρ ∈ {−, 1, 2, 4, 8, 16} where “−” denotes
using the full training dataset. We use the best LightGBM model parameters
discovered during prototyping of the parental guidance features: the parameters
are 50 trees of depth 13 with 1024 leaves.

Table 5. The best threshold for each tested reduction ratio. The threshold of 0.03
was identical to 0.05 for all tested ratios with Pgiven

fuse , whereas there are no ties among

thresholds for Pproof
fuse .

ρgivenfuse − 1 2 4 8 16

threshold 0.05 0.05 0.05 0.05 0.05 0.05
solved 161 161 161 161 161 160

ρprooffuse − 1 2 4 8 16

threshold 0.005 0.2 0.2 0.2 0.2 0.2
solved 111 164 163 165 162 164

Table 5 shows that the reduction ratio makes significant difference for the
Pproof
fuse data and almost none for Pgiven

fuse data, which is probably because the Pgiven
fuse

data are already reasonably balanced. Moreover, parental guidance seems to
perform better with Pproof

fuse data than Pgiven
fuse data, probably because mistakes of

Dlarge are included in the training data. In the following experiments, only the
Pproof classification scheme is used (so the prefix is dropped).

LightGBM parameter tuning (merge): Next we perform the second grid
search over the LightGBM training hyper-parameters for Pfuse, fixing ρ = 4 as it
performed best. We try the following values for the three main hyper-parameters,
namely, for the number of trees in a model, the maximum number of tree leaves,
and the maximum tree depth:

trees ∈ {50, 100, 150}
leaves ∈ {1024, 2048, 4096, 8192, 16384}
depth ∈ {13, 40, 60, 256}

The best model for Pfuse solves 171 problems and consists of 100 trees, with the
depth 40, and 8192 leaves, and a threshold of 0.05. Another eight models solve
169 problems. We also tested these parameters to find a better model for Pgiven

fuse ,
which solves 163 problems with ρ = 8 and a threshold of 0.1.

Pos-neg reduction ratio tuning (concat): This grid search uses the best
LightGBM hyper-parameters for Pfuse to test the same reduction ratios and



Table 6. The best threshold for each tested reduction ratio of Pcat.

ρcat − 1 2 4 8 16

threshold 0.5 0.1 0.05 0.3 0.1 0.05
solved 117 168 170 168 173 169

thresholds for Pcat. Table 6 shows that Pcat outperforms Pfuse and ρ = 8 is the
best. Reducing the negatives is even more important here.

LightGBM parameter tuning (concat): The grid search for the Pcat data
is done over the following hyper-parameters:

trees ∈ {50, 100, 150, 200}
leaves ∈ {1024, 2048, 4096, 8192, 16384, 32768}
depth ∈ {13, 40, 60, 256, 512}

The upper limits have increased compared to the Pfuse grid-search because one of
the best models had 150 trees of depth 256, placing it at the edge of the grid. The
best models solve 174-175 problems. These are evaluated on the full development
set (Table 7). The larger models seem to work best with a threshold of 0.05 and
the smaller models with a threshold of 0.2, which is likely because they can be
less precise. The full distribution of the results can be seen in Figure 1. The
number of parameter configurations that outperform the baseline suggests that
parental guidance is an effective method.

Table 7. The best Pcat models with ρ = 8.

trees depth leaves threshold solved (300) solved (D)

200 60 4096 0.05 175 1557
200 512 4096 0.05 175 1561
200 256 4096 0.05 174 1558
150 512 1024 0.2 174 1568
150 256 1024 0.2 174 1556
100 60 8192 0.05 174 1571
100 40 2048 0.2 174 1544
100 40 2048 0.1 174 1544

Finally we evaluate the best models on the small training, development, and
holdout sets, and we compare them with the standalone performance of Dlarge

(Table 8). Parental guidance achieves a significant improvement in performance
on all datasets, solving 11.7% more on the holdout set. It is interesting to note
that the improvement is greater on the development and holdout sets than on
the training set. For parental guidance it seems superior to classify only proof
clauses as positive examples. This is most likely due to LightGBM being con-
fused by processed clauses that did not contribute to any proof. The method



Fig. 1. The number of settings (and runs) corresponding to each number of solutions
for the Pcat grid search. The black bar is 159, the number of problems solved by Dlarge.
Only 154 (20%) of the runs interfere with Dlarge’s performance and solve fewer problems.
These runs largely consist of the thresholds, {0.3, 0.4, 0.5}, but the only parameter
whose majority of runs score below Dlarge is a threshold of 0.5. The outliers tend to be
larger models.

of concatenating the parent clause feature vectors (Pcat) seems far superior to
merging them (Pfuse). This is likely because merging the features is lossy and
the order of the parents matters when performing inferences.

The results indicate that pruning clauses prior to clause evaluation is helpful.
ENIGMA models tend to run best in equal combination with a strong E strat-
egy, but this means they have no control over 50% of the clauses selected for
processing. The ability to filter which clauses the strong E strategy can evaluate
and select may be part of the strength behind parental guidance.

5.4 Parental Guidance with Glarge and 3-phase ENIGMAs

We also explore a limited number of the most useful hyper-parameters from Sec-
tions 5.3 and 5.2 to combine the parental filtering with ENIGMA-GNN using
Glarge and to create a 3-phase ENIGMA. We train a new LightGBM parental
filtering model on the Pcat data generated by running Glarge, using ρ = 8,
trees = 100, leaves = 8192, and depth = 60. The grid search on the 300 de-
velopment problems leads to the best threshold values of 0.005 and 0.01 when
using context = 768 and query = 256 for ENIGMA-GNN with Glarge.



Table 8. Final 30s evaluation on small trains (T), development (D), and holdout (H)
compared with Dlarge.

model threshold solved (T) solved (D) solved (H)

Dlarge - 3269 1397 1390

Pgiven
fuse +Dlarge 0.05 3302 (+1.0%) 1411 (+1.0%) 1417 (+1.9%)

Pproof
fuse +Dlarge 0.1 3389 (+3.7%) 1489 (+6.6%) 1486 (+6.9%)
Pcat+Dlarge 0.05 3452 (+5.6%) 1571 (+12.4%) 1553 (+11.7%)

The version with the 0.01 threshold then reaches so far the highest value of
1621 development problems in 30s CPU time. This is 50 more than the best
parental result using Dlarge and 6 more than the best 2-phase result. On the
holdout set this setting yields 1623 problems, i.e., 70 more than the best Dlarge

parental result and 21 more than the best 2-phase result.

Finally, we explore 3-phase ENIGMAs, i.e., combinations of all the methods
developed in this work. This means that we first use the parental guidance
filtering, followed by the 2-phase evaluation which in turn uses the GPU server.
This implies a higher evaluation cost, since both the parental and the first-stage
LightGBM models are loaded on startup and are used to filter the clauses.

We only tune the parental threshold and context and query values, keeping
the 2-phase threshold fixed at 0.1. The best result is again obtained by setting
the parental threshold to 0.01, context = 768 and query = 256. This solves 1631
resp. 1632 of the development resp. holdout problems in 30s CPU time. This is
our ultimate result, which is exactly 60% higher than the 1020 problems solved
by E’s auto-schedule in 30s CPU time. It is also 17.4% higher than the best
ENIGMA result prior to this work (1390 by standalone Dlarge).

6 Conclusion and Examples

We have described several additions to the ENIGMA system. The new methods
combine fast(er) and smart(er) clause evaluation using ENIGMA’s parameter-
izable learning-based setting. The GPU server allows much faster runs of the
neurally-guided ENIGMA, improving its real-time performance by about 10%.
The parental guidance allows one to train clause evaluation differently from stan-
dard ENIGMA, providing an improvement of 11.7% on the holdout set. Both
when training on small and on large datasets, the 2-phase methods provide good
improvements on the holdout sets (9% and 7.3%) over the strongest standalone
methods. The methods are adjustable and they will likely lead to even higher
improvements in longer runtimes, due to the typically quadratic growth of the
set of generated clauses in saturation-style ATPs. Our strongest 3-phase method
improves E’s auto-schedule on the holdout set by 60% in 30 seconds and our
best prior ENIGMA result by 17.4%.



Several examples of the new proofs produced only by the methods developed
here are available on our project’s web page. Theorem INTEGR13:2715 about
the differentiation of −cot(ln(x)) needed 3904 nontrivial given clause loops and
38826 nontrivial generated clauses, taking only 18s with the 2-phase ENIGMA.
This can be compared to the previous related theorem FDIFF 7:3616 (differenti-
ation of exp(cos(x))) done in the old setting, taking 28.4s to do only 1284 non-
trivial given clause loops and 13287 nontrivial generated clauses. Other examples
include a 486-long proof17 of a theorem about integrals done only in 41s with the
2-phase ENIGMA evaluating 100k clauses, or a 259-long computational proof18

about Fermat primes found in 11s while evaluating 52k clauses. Such proofs
are found despite hundreds of redundant axioms, by using new combinations of
faster and smarter trained ENIGMAs that efficiently guide the search.

7 Acknowledgments

This work was partially supported by the ERC Consolidator grant AI4REASON
no. 649043 (ZG, JJ, and JU), the European Regional Development Fund under
the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466 (ZG,
JU, KC), the ERC Starting Grant SMART no. 714034 (JJ, MO), and by the
Czech MEYS under the ERC CZ project POSTMAN no. LL1902 (JJ).

References

1. Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Chen Zhifeng, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin Sanjay Ghe-
mawat, Andrew Harp Ian Goodfellow, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Manjunath Kudlur Lukasz Kaiser, Josh Levenberg, Dan
Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Paul Tucker Kunal Talwar, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, , and Xiaoqiang Zheng. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

2. Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016.
ACM.

3. Karel Chvalovský, Jan Jakub̊uv, Martin Suda, and Josef Urban. ENIGMA-NG:
efficient neural and gradient-boosted inference guidance for E. In Pascal Fontaine,
editor, Automated Deduction - CADE 27 - 27th International Conference on Au-
tomated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716
of Lecture Notes in Computer Science, pages 197–215. Springer, 2019.

15 https://github.com/ai4reason/ATP Proofs/#differentiation---cot--ln-x--1--x--sin-
ln-x2-

16 https://github.com/ai4reason/ATP Proofs/#differentiation-exp r--cos--x----exp r
--cos--x--sin-x

17 https://github.com/ai4reason/ATP Proofs/#integral-chi-aa-is-integrable--integral
-chi-aa--vol-a-486-long-atp-proof-from-63-premises

18 https://github.com/ai4reason/ATP Proofs/#17-is-prime

https://github.com/ai4reason/ATP_Proofs/#differentiation---cot--ln-x--1--x--sin-ln-x2-
https://github.com/ai4reason/ATP_Proofs/#differentiation---cot--ln-x--1--x--sin-ln-x2-
https://github.com/ai4reason/ATP_Proofs/#differentiation-exp_r--cos--x----exp_r--cos--x--sin-x
https://github.com/ai4reason/ATP_Proofs/#differentiation-exp_r--cos--x----exp_r--cos--x--sin-x
https://github.com/ai4reason/ATP_Proofs/#integral-chi-aa-is-integrable--integral-chi-aa--vol-a-486-long-atp-proof-from-63-premises
https://github.com/ai4reason/ATP_Proofs/#integral-chi-aa-is-integrable--integral-chi-aa--vol-a-486-long-atp-proof-from-63-premises
https://github.com/ai4reason/ATP_Proofs/#17-is-prime


4. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9:1871–
1874, June 2008.

5. John C Gittins. Bandit processes and dynamic allocation indices. J. the Royal
Statistical Society. Series B (Methodological), pages 148–177, 1979.

6. Zarathustra Goertzel, Jan Jakub̊uv, Stephan Schulz, and Josef Urban. ProofWatch:
Watchlist guidance for large theories in E. In Jeremy Avigad and Assia Mahboubi,
editors, Interactive Theorem Proving - 9th International Conference, ITP 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-
12, 2018, Proceedings, volume 10895 of Lecture Notes in Computer Science, pages
270–288. Springer, 2018.

7. Zarathustra Goertzel, Jan Jakub̊uv, and Josef Urban. Enigmawatch: Proofwatch
meets ENIGMA. In Serenella Cerrito and Andrei Popescu, editors, Automated Rea-
soning with Analytic Tableaux and Related Methods - 28th International Confer-
ence, TABLEAUX 2019, London, UK, September 3-5, 2019, Proceedings, volume
11714 of Lecture Notes in Computer Science, pages 374–388. Springer, 2019.

8. Georg Gottlob, Geoff Sutcliffe, and Andrei Voronkov, editors. Global Conference
on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia, October 16-19, 2015, vol-
ume 36 of EPiC Series in Computing. EasyChair, 2015.

9. Thomas Hillenbrand. Citius altius fortius: Lessons learned from the theorem prover
WALDMEISTER. ENTCS, 86(1):9–21, 2003.

10. Jan Jakub̊uv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda,
and Josef Urban. ENIGMA anonymous: Symbol-independent inference guiding
machine (system description). In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning - 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes
in Computer Science, pages 448–463. Springer, 2020.

11. Jan Jakub̊uv and Josef Urban. ENIGMA: efficient learning-based inference guiding
machine. In Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe,
and Olaf Teschke, editors, Intelligent Computer Mathematics - 10th International
Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings, volume
10383 of Lecture Notes in Computer Science, pages 292–302. Springer, 2017.

12. Jan Jakub̊uv and Josef Urban. Enhancing ENIGMA given clause guidance. In
Florian Rabe, William M. Farmer, Grant O. Passmore, and Abdou Youssef, ed-
itors, Intelligent Computer Mathematics - 11th International Conference, CICM
2018, Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lec-
ture Notes in Computer Science, pages 118–124. Springer, 2018.

13. Jan Jakub̊uv and Josef Urban. Hierarchical invention of theorem proving strategies.
AI Commun., 31(3):237–250, 2018.

14. Jan Jakub̊uv and Josef Urban. Hammering Mizar by learning clause guidance. In
John Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International
Conference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019,
Portland, OR, USA, volume 141 of LIPIcs, pages 34:1–34:8. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

15. Cezary Kaliszyk. Efficient low-level connection tableaux. In Hans de Nivelle,
editor, Automated Reasoning with Analytic Tableaux and Related Methods - 24th
International Conference, TABLEAUX 2015, Wroc law, Poland, September 21-24,
2015. Proceedings, volume 9323 of Lecture Notes in Computer Science, pages 102–
111. Springer, 2015.

16. Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning,
55(3):245–256, 2015.



17. Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsák. Reinforce-
ment learning of theorem proving. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pages 8836–8847, 2018.

18. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
In NIPS, pages 3146–3154, 2017.

19. Michael K. Kinyon, Robert Veroff, and Petr Vojtechovský. Loops with abelian
inner mapping groups: An application of automated deduction. In Maria Paola
Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics -
Essays in Memory of William W. McCune, volume 7788 of LNCS, pages 151–164.
Springer, 2013.

20. Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In
Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages
1–35. Springer, 2013.

21. Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep
network guided proof search. In Thomas Eiter and David Sands, editors, LPAR-
21, 21st International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Maun, Botswana, May 7-12, 2017, volume 46 of EPiC Series in
Computing, pages 85–105. EasyChair, 2017.

22. William McCune. Experiments with discrimination-tree indexing and path index-
ing for term retrieval. J. Autom. Reason., 9(2):147–167, 1992.

23. Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding
for automated reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilk-
ina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors,
ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020
- Including 10th Conference on Prestigious Applications of Artificial Intelligence
(PAIS 2020), volume 325 of Frontiers in Artificial Intelligence and Applications,
pages 1395–1402. IOS Press, 2020.

24. Ross A. Overbeek. A new class of automated theorem-proving algorithms. J.
ACM, 21(2):191–200, April 1974.

25. Thomas Raths and Jens Otten. randocop: Randomizing the proof search order
in the connection calculus. In Boris Konev, Renate A. Schmidt, and Stephan
Schulz, editors, Proceedings of the First International Workshop on Practical As-
pects of Automated Reasoning, Sydney, Australia, August 10-11, 2008, volume 373
of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

26. Constantin Ruhdorfer and Stephan Schulz. Efficient implementation of large-scale
watchlists. In Pascal Fontaine, Konstantin Korovin, Ilias S. Kotsireas, Philipp
Rümmer, and Sophie Tourret, editors, Joint Proceedings of the 7th Workshop on
Practical Aspects of Automated Reasoning (PAAR) and the 5th Satisfiability Check-
ing and Symbolic Computation Workshop (SC-Square) Workshop, 2020 co-located
with the 10th International Joint Conference on Automated Reasoning (IJCAR
2020), Paris, France, June-July, 2020 (Virtual), volume 2752 of CEUR Workshop
Proceedings, pages 120–133. CEUR-WS.org, 2020.

27. Simon Schäfer and Stephan Schulz. Breeding theorem proving heuristics with
genetic algorithms. In Gottlob et al. [8], pages 263–274.

28. Stephan Schulz. Fingerprint indexing for paramodulation and rewriting. In Bern-
hard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th
International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.



Proceedings, volume 7364 of Lecture Notes in Computer Science, pages 477–483.
Springer, 2012.

29. Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middel-
dorp, and Andrei Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735–743.
Springer, 2013.

30. Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger:
E 2.3. In Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th Inter-
national Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings, volume 11716 of Lecture Notes in Computer Science, pages 495–507.
Springer, 2019.

31. Mark E Stickel. The path-indexing method for indexing terms. Technical report,
SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE
CENTER, 1989.

32. Geoff Sutcliffe and Christian B. Suttner. The state of CASC. AI Commun.,
19(1):35–48, 2006.

33. Geoff Sutcliffe and Josef Urban. The CADE-25 automated theorem proving system
competition - CASC-25. AI Commun., 29(3):423–433, 2016.

34. Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J.
Autom. Reasoning, 37(1-2):21–43, 2006.

35. Josef Urban. BliStr: The Blind Strategymaker. In Gottlob et al. [8], pages 312–319.
36. Josef Urban, Jǐŕı Vyskočil, and Petr Štěpánek. MaLeCoP: Machine learning con-

nection prover. In Kai Brünnler and George Metcalfe, editors, TABLEAUX, volume
6793 of LNCS, pages 263–277. Springer, 2011.

37. Robert Veroff. Using hints to increase the effectiveness of an automated reasoning
program: Case studies. J. Autom. Reasoning, 16(3):223–239, 1996.

38. Andrei Voronkov. The anatomy of Vampire implementing bottom-up procedures
with code trees. J. Autom. Reason., 15(2):237–265, 1995.

A Strategy S used in the Experiments

The following E strategy has been used to undertake the experimental evaluation.
The given clause selection strategy (heuristic) is defined using parameter “-H”.

--definitional-cnf=24 --split-aggressive --simul-paramod -tKBO6 -c1 -F1

-Ginvfreq -winvfreqrank --forward-context-sr --destructive-er-aggressive

--destructive-er --prefer-initial-clauses -WSelectMaxLComplexAvoidPosPred

-H’(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,4),

1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0.2,4),

1*Refinedweight(ConstPrio,4,300,4,4,0.7),

1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,200,2.5,

9999.9,9999.9),

1*StaggeredWeight(DeferSOS,1),

1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5),

2*Clauseweight(ConstPrio,20,9999,4),

2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0.5),

2*StaggeredWeight(DeferSOS,2))’

B Results of Parameter Grid Search



Table 9. Parameter grid search on a 300 problem development dataset for the com-
bination of Dsmall and Gsmall sorted by performance. Gsmall alone solves 140 problems.

Threshold time query context solved

0.03 60 512 1024 151
0.01 60 512 1024 151
0.03 60 1024 768 149
0.03 30 512 1024 149
0.03 30 1024 768 147
0.01 60 1024 768 146
0.01 30 2048 768 146
0.03 30 256 768 145
0.01 30 512 1024 145
0.01 30 256 768 145
0.01 30 1024 768 145
0.07 30 512 1024 143
0.05 30 256 768 143
0.05 60 256 768 142
0.05 30 1024 768 142
0.07 30 512 768 141
0.03 30 2048 768 141
0.05 30 512 768 140
0.05 30 512 1024 140
0.07 30 2048 768 139
0.07 30 1024 768 138
0.1 30 512 768 137
0.1 30 256 768 137
0.1 30 1024 768 137
0.07 30 256 768 137
0.05 30 2048 768 137
0.1 30 512 1024 136
0.1 30 2048 768 134

Threshold time query context solved

0.2 30 512 768 132
0.2 30 256 768 131
0.3 30 256 768 130
0.2 30 512 1024 129
0.2 30 2048 768 129
0.3 30 512 768 127
0.3 30 512 1024 127
0.3 30 2048 768 126
0.4 30 256 768 121
0.4 30 512 768 119
0.5 30 512 768 118
0.4 30 512 1024 118
0.4 30 2048 768 118
0.5 30 512 1024 117
0.5 30 256 768 114
0.5 30 2048 768 113
0.6 30 2048 768 108
0.6 30 512 768 106
0.6 30 512 1024 105
0.6 30 256 768 104
0.7 30 512 768 103
0.7 30 512 1024 103
0.7 30 2048 768 101
0.7 30 256 768 100
0.8 30 512 768 97
0.8 30 512 1024 97
0.8 30 2048 768 97
0.8 30 256 768 94



Table 10. Parameter grid search on a 300-big development dataset for the combination
of Dlarge and Gsmall sorted by performance. Gsmall alone solves 140 problems.

Threshold time query context solved

0.4 60 2048 768 164
0.3 30 2048 768 163
0.4 30 512 1024 161
0.3 30 512 768 161
0.2 30 2048 768 161
0.2 30 256 768 161
0.4 30 512 768 160
0.4 30 256 768 160
0.2 30 512 1024 160
0.4 30 2048 768 159
0.3 30 512 1024 158
0.3 30 256 768 158
0.2 30 2048 768 156
0.1 30 256 768 156
0.5 30 512 1024 155
0.1 30 512 1024 155
0.1 30 2048 768 155
0.5 30 256 768 154
0.2 30 512 768 154
0.5 30 512 768 153
0.5 30 2048 768 152

Threshold time query context solved

0.1 30 512 768 152
0.07 30 512 768 152
0.05 30 512 1024 152
0.07 30 2048 768 149
0.05 30 256 768 149
0.05 30 2048 768 148
0.05 30 512 768 147
0.07 30 512 1024 146
0.07 30 256 768 146
0.6 30 256 768 144
0.6 30 512 768 143
0.6 30 512 1024 143
0.6 30 2048 768 137
0.7 30 256 768 122
0.7 30 512 768 121
0.7 30 512 1024 121
0.7 30 2048 768 120
0.8 30 512 768 106
0.8 30 512 1024 106
0.8 30 256 768 106
0.8 30 2048 768 103



Table 11. Parameter grid search on a 300-big development dataset for combinations
of Dlarge and Glarge sorted by performance. Glarge alone solves 165 problems.

Threshold time query context solved

0.1 60 1024 768 180
0.2 60 512 1024 177
0.1 60 512 1024 176
0.1 30 1024 768 176
0.2 30 512 1024 175
0.1 30 512 1024 174
0.1 30 256 768 172
0.1 30 2048 768 172
0.2 30 256 768 171
0.2 30 1024 768 171
0.2 30 2048 768 170
0.05 30 1024 768 170
0.07 30 1024 768 168
0.3 30 256 768 167
0.3 30 512 1024 166
0.3 30 1024 768 166
0.4 30 1024 768 164
0.3 30 2048 768 164
0.4 30 512 1024 163

Threshold time query context solved

0.4 30 2048 768 163
0.4 30 256 768 161
0.5 30 256 768 158
0.5 30 512 1024 156
0.5 30 1024 768 155
0.5 30 2048 768 151
0.6 30 256 768 144
0.6 30 512 1024 143
0.6 30 1024 768 138
0.6 30 2048 768 137
0.7 30 512 1024 121
0.7 30 256 768 120
0.7 30 2048 768 120
0.7 30 1024 768 119
0.8 30 1024 768 108
0.8 30 512 1024 107
0.8 30 256 768 107
0.8 30 2048 768 105


