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Abstract10

Proofgold is a peer to peer cryptocurrency making use of formal logic. Users can publish theories11

and then develop a theory by publishing documents with definitions, conjectures and proofs. The12

blockchain records the theories and their state of development (e.g., which theorems have been13

proven and when). Two of the main theories are a form of classical set theory (for formalizing14

mathematics) and an intuitionistic theory of higher-order abstract syntax (for reasoning about15

syntax with binders). We have also significantly modified the open source Proofgold Core client16

software to create a faster, more stable and more efficient client, Proofgold Lava. Two important17

changes are the cryptography code and the database code, and we discuss these improvements. We18

also discuss how the Proofgold network can be used to support large formalization efforts.19
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1 Introduction28

Proofgold is a cryptocurrency network with support for formal logic and mathematics. An29

initial version of the Proofgold Core software was anonymously announced on June 8, 2020,30

via a memo.cash account.1 The software and a discussion forum was available at proofgold.org31

until December 2021, at which time proofgold.org became unreachable.2 During these first32

18 months of Proofgold’s existence the authors of the present paper experimented with the33

system, including publishing a number of formal theories and developments into Proofgold’s34

blockchain. In the course of these experiments it became clear that the Proofgold Core35

software was slow and unstable. As a consequence the authors have created an alternative36

client.3 Since Proofgold is relatively new and not well known we will need to describe37

Proofgold in general in order to put our work into an understandable context. We will make38

explicit what is our work and what is preexisting work.39

1 https://memo.cash/profile/1NzEUQWpb5Mze9REfkVAZ8wDcxzqpZFNJ8
2 An archive of proofgold.org from December 2021, including the last release of the Proofgold Core

software, is available at https://prfgld.github.io/.
3 http://proofgold.net/
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We give an introduction of Proofgold in Section 2. We present the intuitionistic higher-40

order logic at the kernel of Proofgold in Section 3. Several Proofgold theories are described41

in Section 4, all but the first of which was published into the Proofgold chain by one of the42

present authors. We describe the Proofgold Lava Client in Section 5, a significantly faster43

and more stable client primarily developed by one of the present authors. A HOL4 interface44

developed by one of the present authors for proving theorems with bounties is described in45

Section 6. A description of the bounty system, current bounties and possible future use of46

bounties is explored in Section 7. We conclude by considering related work in Section 8.47

2 Introduction to Proofgold48

At the core of Proofgold is a proof checker for intuitionistic higher-order logic with functional49

extensionality. On top of this framework users can publish theories. A theory consists of a50

finite number of primitive constants along with their types and a finite number of sentences51

as axioms. A theory is uniquely identified by its 256-bit identifier given by the Merkle root of52

the theory (seen as a tree). After a theory has been published, documents can be published53

in the theory. Documents can define new objects (using primitives or previously defined54

objects), prove new theorems and make new conjectures. When a theory is published, the55

axioms are associated with public keys which are marked as the owners of the propositions.56

Likewise, when a document proves a theorem within a theory, a public key (associated with57

the publisher of the document) is associated with the proven proposition. These are the only58

ways propositions can have declared owners. As a consequence, it is possible to determine if59

a proposition is known (either as an axiom or as a previously proven theorem) by checking60

if it has an owner. Ownership of propositions also gives a way of redeeming bounties by61

proving conjectures. A bounty can be placed on an unproven proposition where this bounty62

can only be spent by the owner of a proposition (or the owner of the negated proposition).63

By publishing a document resolving the conjecture, the bounty proposition (or its negation)64

will become owned by public keys associated with the publisher of the document. After65

this the bounty can be claimed. In order to prevent network participants from frontrunning66

proofs (i.e., “stealing” proofs from unconfirmed documents to unfairly claim bounties), a67

document can only be published (at which point proofs in the document are revealed) after68

a commitment has been published and sufficiently confirmed. All of the concepts above69

(theories, documents, owners, bounties and commitments) are inherited from the Qeditas70

code base and are described either in the Qeditas white paper [25] or Qeditas technical71

documentation [6].472

A major difference between Proofgold and Qeditas is the consensus mechanism. Qeditas73

had planned to be proof-of-stake, with the initial stake determined by a snapshot of the74

Bitcoin blockchain (i.e., an “airdrop”). Proofgold is a combination of proof-of-stake and75

proof-of-burn, where the proof-of-burn element involves burning small amounts of Litecoin.76

During the initial month of Proofgold (mostly in June 2020) before any participant had77

a stake, blocks could be created using proof-of-burn alone. Proofgold nodes must be run78

in combination with Litecoin nodes in order to verify proofs-of-burn. The Litecoin burn79

transactions also contain data committing to the previous Litecoin burn transaction and the80

id of new Proofgold block. Due to this, an outline of the Proofgold blockchain can be viewed81

from Litecoin. A benefit of this combination is that Proofgold’s security model is able to82

4 A large part of Proofgold’s code was inherited from the open source Qeditas project. More information
about Qeditas is at https://qeditas.org. Qeditas appears to have never launched.

https://qeditas.org
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reuse the proof-of-work used to secure Litecoin. In particular, Litecoin’s proof-of-work (as83

reflected by the block ids of Litecoin blocks) is used to determine the next staking modifier84

for a Proofgold block. The staking modifier is a large unpredictable number that is used to85

determine when the next opportunity each qualified Proofgold asset will have to stake. The86

connection with Litecoin reduces the risk of some well-known problems with proof-of-stake87

consensus mechanisms [17].88

Another difference from Qeditas is that the first 5000 Proofgold blocks automatically89

put half the block reward as a bounty on pseudorandom propositions. This has the effect90

that as new people with low stake (very few Proofgold bars 5) enter the system, they can91

quickly obtain a higher stake by taking the time to prove theorems with these bounties. The92

automatic placement of bounties has since ended, so that each block generates only a block93

reward of 25 bars to the staker of the block and all bounties are placed intentionally by a94

network participant.95

The primary logical difference between Qeditas and Proofgold is that the logic underlying96

Qeditas included type variables, where the logic underlying Proofgold does not.97

The elements of Proofgold described above are the work of Proofgold Core developers98

who were previously accessible via the proofgold.org forum, with some of the present authors99

sometimes giving feedback via the forum.100

3 Intuitionistic Higher Order Logic101

We briefly describe a formulation of intuitionistic higher order logic (IHOL). We begin with102

a set T of simple types. One base type o is the type of propositions. In general Proofgold103

allows finitely many other base types, but we will only consider cases with one other base104

type ι. All other types are αβ, meaning the type of functions from α to β. Some authors105

write this as βα (following Church [4]) or α → β (especially in the presence of other type106

constructors).107

We next define a family of simply typed terms. For each type α ∈ T , let Vα be a countably108

infinite set of variables of type α. Let C be a finite set of typed constants. We define a set109

Λα of terms of type α as follows: For each variable x of type α, x ∈ Λα. For each constant c110

of type α, c ∈ Λα. If s ∈ Λαβ and t ∈ Λα, then (s t) ∈ Λβ . If x is a variable of type α and111

s ∈ Λβ , then (λx.s) ∈ Λαβ . If s, t ∈ Λo, then (s → t) ∈ Λo. If x is a variable of type α and112

s ∈ Λo, then (∀x.s) ∈ Λo. Note that Λα also depends on the set C, but this set will be fixed113

in each theory.114

We use common conventions to omit parentheses. We sometimes include annotations on115

λ and ∀ bound variables (e.g., λx : α.s and ∀y : β.s) to indicate the type of the variable.116

We define Fs to be the free variables of s and for sets A of terms we define FA to be117 ⋃
s∈A Fs. We assume a capture avoiding substitution sx

t is defined. Terms of type o are118

called propositions. A sentence is a proposition with no free variables.119

The only built-in logical connective is implication (→) and the only built-in quantifier is120

the universal quantifier (∀). In the context of higher-order logic it is well-known how to define121

the remaining logical constructs in a way that respects their intuitionistic meaning. In each122

case we use an impredicative definition that traces its roots to Russell [20] and Prawitz [18].123

We define ⊥ to be the proposition ∀p : o.p where x is a variable of type o. We write ¬s for124

s → ⊥. We define ∧ to be λqr : o.∀p : o.(q → r → p) → p and write s ∧ t for (∧s)t. We125

5 The common Proofgold currency token is called “bars” which are made up of 100 billion Proofgold
“atoms.”

FMBC 2022
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Γ ⊢ s
s ∈ A

Γ ⊢ s
s ∈ Γ

Γ ⊢ s

Γ ⊢ t
s≈t

Γ, s ⊢ t

Γ ⊢ s → t

Γ ⊢ s → t Γ ⊢ s

Γ ⊢ t

Γ ⊢ s

Γ ⊢ ∀x.s
x ∈ Vα \ FΓ

Γ ⊢ ∀x.s
Γ ⊢ sx

t

x ∈ Vα, t ∈ Λα

Γ ⊢ sx = tx

Γ ⊢ s = t
x ∈ Vα \ (FΓ ∪ Fs ∪ Ft) and s, t ∈ Λαβ

Figure 1 Proof Calculus for Intuitionistic HOL

define ∨ to be λqr : o.∀p : o.(q → p) → (r → p) → p and write s ∨ t for (∨s)t. For each type126

α we use ∃x : α.s as notation for ∀p : o.(∀x : α.s → p) → p where p is not x and is not free in127

s. For equality we write s = t (where s and t are type α) as notation for ∀p : ααo.pst → pts128

where p is neither free in s nor t. This is a modification of Leibniz equality which we will129

call symmetric Leibniz equality.6 We write s ̸= t to mean (s = t) → ⊥. The βη-conversion130

relation s≈t is defined in the usual way.131

Let A be a set of sentences intended to be axioms of a theory. A natural deduction132

system for intuitionistic higher-order logic with functional extensionality and axioms A is133

given by Figure 1. In particular the rules define when Γ ⊢ s holds where Γ is a finite set of134

propositions and s is a proposition. Aside from the treatment of functional extensionality,135

this is the same as the natural deduction calculus described in [3].136

Adding Curry-Howard style checkable proof terms to such a calculus is well-understood137

and we do not dwell on this here [22]. Proofs published in Proofgold documents are given138

by such proof terms. There are two practical restrictions Proofgold places on proofs. One139

restriction is that proofs cannot be too big. A proof is part of a document, a document140

is published in a transaction and a transaction is published in a block. Proofgold has a141

block size limit of 500KB, so that proofs larger than 500KB (measured in Proofgold’s binary142

format) cannot be published. If one has a proof larger than 500KB, then either one must find143

a smaller proof or separate the result into lemmas with smaller proofs published in separate144

documents (in separate blocks). Another restriction is that checking a proof is not allowed to145

be too hard. In an extreme case, checking a proof could require β-normalizing a term of size146

m to obtain a term of size 222m

(or even much larger). The Proofgold Core checker avoids147

such “poison proofs” by maintaining a counter that increments while a document is being148

checked. Each step of the computation increments the counter. For example, substituting t149

for a de Bruijn index x in a term r x x increments the counter at least 5 times since there are150

two applications, two occurrences of x and one occurrence of r. Depending on the structure151

of r the counter may be incremented more. Also, in practice the substitution may be beneath152

a binder so that de Bruijn indices in t may need to be shifted. Such shifting increments153

the counter in a similar way. If the counter reaches a certain bound (150 million), then an154

exception is raised and the document is considered to be incorrect.155

6 This variant of equality was the choice of the initial Proofgold developers.
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4 Proofgold Theories156

A theory is determined by a finite number of typed primitives and axioms. Each theory is157

isolated from other theories. A drawback of this approach is there is no way to directly use158

results from one theory in another. A benefit is that if one theory turns out to be inconsistent,159

this will have no affect on other theories. Below we describe a number of Proofgold theories,160

where the authors are responsible for all but the first.161

4.1 HF Theory162

Proofgold has one built-in theory: a theory of hereditarily finite sets (HF). This theory163

was included by the initial Proofgold developers in order to have a language for generating164

potentially meaningful pseudorandom propositions for bounties given as half the block reward.165

There are many primitive constants, but only six do not have a defining equation: ε : (ιo)ι (a166

“choice” operator), ∈: ιιo (set membership), ∅ : ι (the empty set, also the ordinal 0),
⋃

: ιι167

(the union operator), ℘ : ιι (the power set operator) and r : ι(ιι)ι (the replacement operator).168

For each of the above constants, there is at least one axiom giving a property the constant169

must satisfy. Additional axioms are a classical principle (∀p.¬¬p → p), set extensionality, an170

∈-induction principle and an induction principle implying all sets are hereditarily finite.171

The theory additionally includes 97 constants with axioms giving a definitional equation172

for each constant. Examples include a constant indicating a set has exactly 5 elements, a173

constant indicating that an algebraic structure is a loop and a constant indicating that two174

untyped combinators (represented as sets) are equivalent under conversion. The HF theory175

was used to generate pseudorandom bounties for the first 5000 Proofgold blocks. These extra176

constants make it possible to easily generate sentences targeting certain classes.7 The last of177

the pseudorandom bounties was automatically placed in December 2020. As of May 2022,178

38% of the conjectures have been resolved and the bounties collected. The fact that 62% are179

still outstanding after 17 months is an indication of the difficulty of the problems.180

4.2 Two HOTG Theories181

There are two theories axiomatizing higher-order Tarski Grothendieck set theory (HOTG).182

These were both published into the Proofgold blockchain by the first author. The two theories183

follow the two formulations described in [3]. One is based on the Mizar formulation8 and the184

other is based on the Egal formulation. Both theories are classical via the Diaconescu proof185

of excluded middle from choice (at ι) and set extensionality [19]. Most of the documents186

published into the Proofgold blockchain have been published in the HOTG-Egal theory.187

These documents target formalization of mathematics. A highlight is the construction of the188

real numbers via a representation of Conway’s surreal numbers [5].189

4.3 A Theory for HOAS190

A different kind of theory published into the Proofgold blockchain is a theory for reasoning191

about syntax. Unlike the theories above, this theory does not imply classical principles. This192

theory was also published into the Proofgold blockchain by the first author. We describe it in193

7 More information can be found in http://grid01.ciirc.cvut.cz/~chad/pfghf.pdf.
8 More information about the Mizar formulation of HOTG can be found in http://grid01.ciirc.cvut.cz/

~chad/pfgmizar.pdf.
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more detail here in order to make it clear Proofgold can be used for more than formalization194

of mathematics. In particular, Proofgold can be used to prove properties of programs with195

bound variables.196

For our theory of syntax, we include one base type ι, two primitive constants P : ιιι and197

B : (ιι)ι and four axioms:198

Pairing is injective: ∀xyzw : ι.Pxy = Pzw → x = z ∧ y = w.199

Binding is injective: ∀fg : ιι.Bf = Bg → f = g.200

Binding and pairing give distinct values: ∀xy : ι.∀f : ιι.Pxy ̸= Bf .201

Propositional extensionality: ∀pq : o.(p → q) → (q → p) → p = q.202

The constant P is a generic pairing operation on syntax and B is a generic binding operation,203

allowing representation by higher-order abstract syntax (HOAS) [16].204

We can embed many syntactic constructs into the theory by building on top of the basic205

pairing and binding operators. For example, we could embed untyped λ-calculus by taking P206

to represent application and B to represent λ-abstraction. Instead of adopting this simple207

approach, we will use tagged pairs when representing application and λ-abstraction, so that208

there will still be infinitely many pieces of syntax that do not represent untyped λ-terms. To209

do this we will need one tag, so let us define nil to be B(λx.x). Now we can define A : ιιι to210

be λxy : ι.P nil (P x y) and define L : (ιι)ι to be λf : ιι.P nil (B f). It is easy to prove A and211

L are both injective and give distinct values.212

We can now impredicatively define the set of untyped λ-terms relative to a set G (intended213

to be the set of possible free variables) as follows. Let us write (G, x) for the term λy :214

ι.G y ∨ y = x. Here G has type ιo while x and y have type ι (and are different). We will215

define Ter : (ιo)ιo so that Ter is the least relation satisfying three conditions:216

∀G : ιo.∀y : ι.Gy → Ter G y,217

∀G : ιo.∀f : ιι.(∀x : ι.Ter (G, x) (fx)) → Ter G (L f) and218

∀G : ιo.∀yz : ι.Ter G y → Ter G z → Ter G (A y z).219

Technically, the impredicative definition of Ter is given as

Ter := λG : ιo.λx : ι.∀p : (ιo)ιo.(∀G : ιo.∀y : ι.Gy → p G y)
→ (∀G : ιo.∀f : ιι.(∀x : ι.p (G, x) (fx)) → p G (L f))

→ (∀G : ιo.∀yz : ι.p G y → p G z → p G (A y z)) → p G x.

We can similarly define one-step β-reduction (relative to a set of variables) as follows:

Beta1 := λG : ιo.λxy : ι.∀r : (ιo)ιιo.
(∀G : ιo.∀f : ιι.∀z.(∀x.Ter (G, x) (fx)) → Ter Gz → r G (A (L f) z) (fz))

→ (∀G : ιo.∀fg : ιι.(∀z.r (G, z) (fz)(gz)) → r G (L f) (L g))
→ (∀G : ιo.∀xyz.r G x z → Ter Gy → r G (A x y) (A z y))

→ (∀G : ιo.∀xyz.r G y z → Ter Gx → r G (A x y) (A x z)) → r G x y.

We can then define BetaE G to be the least equivalence relation (relative to the domain220

Ter G) containing Beta1 G. We omit the details here.221

These definitions give us sufficient material to make conjectures that ask for certain kinds222

of untyped λ-terms. Let ∅ be notation for the term λx : ι.⊥ (representing the empty set of223

variables). Consider the following sentences:224

∃F : ι.Ter ∅ F ∧ ∀x : ι.BetaE (∅, x) (A F x) x (1)225

∃Y : ι.Ter ∅ Y ∧ ∀f : ι.BetaE (∅, f) (A Y f) (A f (A Y f)) (2)226
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Sentence (1) asserts the existence of an identity combinator while sentence (2) asserts the227

existence of a fixed point combinator. In order to prove each sentence a combinator with the228

right property must be given as a witness and then be proven to have the property.9229

As a demonstration, these sentences were published as conjectures (with bounties) in230

documents published into the Proofgold blockchain. The solutions were then published as231

two theorems (with proofs). The solutions contain the witnesses: L(λx.x) for (1) and the232

famous Y -combinator L(λf.A(L(λx.A f (A x x)))(L(λx.A f (A x x)))) for (2).233

These simple examples suggest how Proofgold could be used to publish conjectures for234

verification conditions of programs or even conjectures asking for a program satisfying a235

specification. This could especially be useful when those programs are smart contracts.236

5 Proofgold Lava Client237

The existing client, Proofgold Core, has already included all the functionality needed to run238

the blockchain. However, certain parts of the implementation did not scale well. In particular239

as the number of proofs already in the blockchain grew operations such as synchronizing new240

clients or rechecking the blockchain became too costly. For these reasons we reimplemented241

parts of the client software and provide it as the Proofgold Lava Client and discuss the242

changes in this section. Proofgold Lava is primarily the work of the third author.243

5.1 Database Layer244

The Proofgold client software uses 19 databases. In the Core software they have been stored245

in 19 directories, each with an index file and and a data file. Lookups in this database,246

including locking, became a significant overhead for all Merkle tree operations. For this reason247

in the Lava implementation we switched to the standard Unix DBM interface, in particular248

using the GDBM library by default, which in addition to the already used operations provides249

atomic operations.250

5.2 Cryptography Layer251

Harrison has provided an efficient library10 of field operations in the various cryptographic252

fields verified in the HOL Light theorem prover [10]. The library includes the Elliptic curve253

used by Bitcoin and Proofgold along with a number of other elliptic curves and operations254

provided for them [7]. In the Lava implementation we switched from the OCaml implementa-255

tion of the cryptographic primitives to instead allow a low level efficient implementation. We256

provide the flexibility of switching between two implementations. First, we allow the use of257

the Bitcoin crypto implementation. It has been tested in Bitcoin and other cryptocurrencies,258

so it is likely to be correct. However, we also allow the use of the formally verified version259

(where the verified operations are the addition, multiplication, or inverse modulo in the field,260

but the verification of the actual additions and multiplication of points on the curve is still261

future work).262

In addition to the much more efficient encryption and signing, we also switched to a263

low-level implementation of SHA256 used for hashing, including the recursive hashing of264

9 Note that in a classical calculus, it would be sufficient to prove such an existential statement by proving
it is impossible for a witness not to exist.

10 https://github.com/awslabs/s2n-bignum

FMBC 2022
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all sub-structures used in the Merkle tree. That last operation is used quite often, as all265

subterms used in proof terms are hashed this way.266

5.3 Networking and Proofchecking Layers267

The Lava client also includes a number of improvements to the networking layer and to268

proof checking. We have decided not to change the actual communication protocol between269

the nodes, but rather to improve the implementation. In particular, we have reduced the270

complexity of preparing block deltas and improved the efficiency of serialization. We have271

also replaced the implementation of the checker by a more efficient one. The new checker272

for the variant of simple type theory used in Proofgold includes perfect term sharing and273

preserves a number of invariants (e.g., βη-normal forms) is discussed elsewhere [2].274

6 A HOL4 Interface for Mining Bounties from the HF theory275

HOL4 [21] is an interactive theorem prover (ITP) for higher-order logic (HOL) that helps276

users to produce formal proofs and thus verify theorems. We are developing a HOL4 interface277

to Proofgold for two reasons. The first one is to enable people familiar with the HOL4278

system to check and share their proofs in Proofgold. This way, HOL4 users would benefit279

from the additional features provided by Proofgold such as authorship recognition and the280

bounty system. The second one, which is the focus of this section, is to provide a way to281

manually or automatically prove bounties in HF. For this task, we chose HOL4 because it is282

equipped with powerful automation. The source code of this interface can be downloaded at283

http://grid01.ciirc.cvut.cz/~thibault/h4pfg.tar.gz. The HOL4 interface is primarily the work284

of the second author.285

6.1 Importing the HF theory into HOL4286

We import the 6 axioms and 97 definitions of the HF theory into HOL4. A translation287

between the two systems is straightforward since the logics of HOL4 and HF are similar and288

in particular the formula structures are almost identical. When reading a HF statement, the289

logical constants of the HF theory in Proofgold (e.g., ∧,∨,∀,→, . . .) are mapped to their290

HOL4 native versions. For other HF constants (e.g., ∈,⊂, exactly5 , . . .), new HOL4 constants291

are created. The same process is used to import HF bounties into HOL4.292

6.2 Exporting HOL4 proofs to HF293

To verify theorems proved in HOL4 with Proofgold, we first need to derive the HOL4 kernel294

rules from the IHOL rules and HF axioms. For instance, the HOL4 reflexivity rule can be295

derived from the IHOL rules in the following way:296

ptt ⊢ ptt

⊢ ptt → ptt

⊢ ∀p.ptt → ptt

⊢ t = t

297

Every HOL4 theorem is proved by composing applications of the HOL4 kernel inference298

rules. Therefore, to produce a HF proof, we trace these applications during the proof process299

and substitute them by their corresponding derivations in HF.300

http://grid01.ciirc.cvut.cz/~thibault/h4pfg.tar.gz
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Definition for ⊆
⊢ (a ⊆ b) ↔ (∀y.y ∈ a → y ∈ b)

⊢ (t0 ⊆ t0) ↔ (∀y.y ∈ t0 → y ∈ t0)
y ∈ t0 ⊢ y ∈ t0

∀y. ⊢ y ∈ t0 → y ∈ t0
⊢ t0 ⊆ t0

⊢ x1 = x1
⊢ qt0x1 → x1 = x1

⊢ ∀x1.qt0x1 → x1 = x1

⊢ (t0 ⊆ t0) ∧ (∀x1.qt0x1 → x1 = x1)
⊢ ∃x0.(x0 ⊆ t0) ∧ (∀x1.qx0x1 → x1 = x1)

Figure 2 A HOL4 Proof of a HF Bounty

6.3 Proving Bounties301

To reward the first users, a finite set of automatically generated bounties was included at the302

beginning of the Proofgold blockchain by the developers. The newer bounties proposed by303

developers and users are now usually based on textbook mathematical knowledge (often from304

interactive theorem provers) and are considerably harder than the automatically generated305

ones (see Section 7). We now show how to prove, using the HOL4 interface, some of the first306

“easy” bounties manually and automatically.307

6.3.1 Manual Proof308

The following auto-generated bounty has a relatively easy proof and therefore is one of the309

first we could manually prove:310

∃x0.x0 ⊆ t0 ∧∀x1.(∀x2.x2 ⊆ x1 → ∀x3x4.(¬c0x3x4 ∧ c1x0 ∧¬c2x2) → c3(c4(c5x0))x4) → x1 = x1311

where t0 = ℘(℘(℘(℘∅)))) and [c0, c1, c2, c3, c4, c5] = [tuple, exactly5 , atleast2 , SNo, Sing, SNoLev]312

The main difficulty, when manually proving such an automatically generated bounty, is to313

identify the relevant part of the formula. After a careful analysis, we found that the truth of314

this formula can be derived from this abbreviated version ∃x0.(x0 ⊆ t0) ∧ (∀x1.qx0x1 → x1 =315

x1) where the predicate q is used to hide the irrelevant part. Our proof, shown in Figure 2,316

relies on the imported definition of ⊆.317

6.3.2 Automated Proof318

In general, proof automation tools help speed up formalization of theorems in interactive319

theorem provers. As a demonstration of the possible benefits, we have developed a way to320

automatically prove HF bounties by relying on the automation available in HOL4.321

To prove a bounty, we first call HOL(y)Hammer [8] which is one of the strongest general322

automation techniques available in HOL4. It tries to prove the conjecture from the 6 HF323

axioms and the 97 HF definitions by translating the problem to external automated theorem324

provers (ATPs). When an external ATP finds a proof, it also returns the axioms that325

are necessary to find that proof. With this information, a weaker internal prover such as326

Metis [12] is usually able to reconstruct a HOL4 proof. The Metis proofs however typically327

exceed the Proofgold block size limit of 500kb and include dependencies to HOL4 axioms328

that are not present (and sometimes not provable) in HF. Thus, we have developed a custom329

internal first-order ATP for HOL4 that produces small proofs and only relies on the HF330

axioms. A reduction in proof size is achieved by making definitions for large terms (e.g.331

irrelevant parts of the conjecture and Skolem functions, similar to the example given in332

Section 6.3.1) and proving auxiliary lemmas for repeated sequences of proof steps (e.g., when333
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permuting literals in clauses). With these optimizations, the automated proof for the bounty334

from Section 6.3.1 is only four times as large as the manual one (16kb instead of 4kb). The335

manual proof for this bounty has been submitted and included in the blockchain and the336

bounty associated with it has been collected. In addition to that, we have so far automatically337

found and submitted six proofs of the HF conjectures with bounties. All these proofs were338

accepted by the Proofgold proof checker and the bounties were collected.339

This automated system is currently limited to essentially first-order formulas. In the340

future, we plan to support automated proofs for higher-order formulas based on existing341

automated translations to first-order [15].342

7 The Bounty System and its Applications343

One of the main extra features of Proofgold beyond proof verification is the possibility for344

users and developers to attach bounties to propositions. Bounties can be used to reward345

users for finding proofs in mathematical domains of general interest or subproofs of a larger346

formalization.347

7.1 Current Bounties348

As mentioned in Section 4.1 for the first 5000 blocks the Proofgold consensus algorithm349

automatically placed a bounty of 25 Proofgold bars (half of the block reward) on a pseudoran-350

dom proposition. We say more about these pseudorandom propositions below. For the next351

10000 blocks 25 Proofgold bars (half of the block reward) were placed into a “bounty fund”352

which was used to place larger bounties on meaningful propositions decided upon through353

a community forum. The propositions chosen vary from first-order problems derived from354

Mizar proofs, finite Ramsey properties (e.g., R(5, 7) is larger than the cardinality of ℘5),355

properties of specific categories (e.g., the category of hereditarily finite sets), and numerous356

others. Since Block 15000 the full block reward is 25 bars and none of this goes towards the357

creation of bounties, and so bounties are placed by intention rather than automation.358

The pseudorandom propositions from the first 5000 blocks can be classified into 8 classes.359

We briefly describe these here to give a concrete idea of the current bounties. The classes360

were determined by the initial Proofgold developers.361

Random362

Conjectures in this class are generally not meaningful, but the choices made during the363

generation are also not uniformly random. The conjecture must start with at least two364

(possibly bounded) quantifiers. When a term of type ι must be generated and a bound365

variable is not being chosen, then half the time the binary representation of a number between366

5 and 20 is used, a quarter of the time the unary representation of a number between 5 and367

20 is used. In the remaining quarter of the cases, half the time a unary function is chosen368

(leaving the argument to be generated), a quarter of the time a binary function is chosen369

(leaving two arguments to be generated) and the remaining quarter some other set former is370

used (e.g., Sep). In case the generation seems to be running out of bits of information, then371

it restricts the choices available.372

There are three subclasses of random conjectures. The first kind is simply a sentence373

constructed roughly as described above. The second kind is of the form ∀p : ιo.∀f : ιι.s374

where s is generated as above but is allowed to use the (uninterpreted) unary predicate p and375

unary function f . The third kind is of the form ∀xyz.∀f : ιι.∀pq : ιo.∀g : ιιι.∀r : ιιo.s where376
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s is a generated as above though it is allowed to use x, y, z, f, g to construct sets, to use377

p, q, r to construct atomic propositions and is (mostly) disallowed from using the constants378

from the HF set theory.379

The automated miner from Section 6 was tested on problems from this family.380

Quantified boolean formulas (QBF)381

Conjectures in the QBF class are of the form Q1p1 : o. · · · .Qnpn : o.s ↔ t where 50 ≤ n ≤ 55,382

each Qi is ∀ or ∃ and s and t are propositions such that F(s) = F(t) = {p1, . . . , pn}. The383

propositions s and t are generated using a similar process.384

Set Constraints385

One of the most challenging aspects of higher-order theorem proving is instantiating set386

variables, i.e., variables of a type like ιo [1]. The only known complete procedure requires387

enumeration of βη-normal terms of this type.388

The set constraint conjectures are of the form

∀P1 : α1.∀P2 : α2.∀P3 : α3.∀P4 : α4.φ
1
1 → φ1

2 → φ2
3 → φ2

4 → φ3
5 → φ3

6 → φ4
7 → φ4

8 → ⊥

where each αi is a small type of the form β1 · · ·βmio and each proposition φi
j is a lower389

bound constraint for Pi over {P1, P2, P3, P4} if j is odd and an upper bound constraint for390

Pi over {P1, P2, P3, P4} if j is even. A lower bound constraint for a variable P is a formula391

that implies P must at least be true for certain elements. An upper bound constraint for a392

variable P is a formula that implies P cannot be true for more than some number of elements.393

Such constraints may also be recursive, e.g., saying if P z holds then P (f z) must hold.394

Recursive constraints can in principle be both lower bound and upper bound constraints.395

The positive version of the conjecture states that there is no solution to this collection of396

set constraints. The negative version can be proven by giving a solution.397

Higher-Order Unification398

Unlike first-order unification, higher-order unification is undecidable. In spite of this Huet’s399

preunification algorithm [11] provides a reasonable method to search for solutions. A great400

deal of research has been done on higher-order unification and is ongoing today [24].401

The generated conjectures in this class are essentially higher-order unification problems
with eight flex-rigid pairs and four variables to instantiate. The problems are given in a
universal form, so that the positive form states that there is no solution. The negative form
could be proven by giving a solution. In general the conjectures have the form

∀X1 : α1.∀X2 : α2.∀X3 : α3.∀X4 : α4.φ
1
1 → φ1

2 → φ2
3 → φ2

4 → φ3
5 → φ3

6 → φ4
7 → φ4

8 → ⊥

where αi is a small type not involving o and φi
j is a proposition corresponding to a disagreement402

pair of a unification problem.403

Untyped Combinator Unification404

Since we are in a simply typed setting the untyped combinators are encoded as sets. The
generated conjectures are in the form of eight flex-rigid pairs using four variables to be
instantiated. Each conjecture is stated in a universal form that means there is no solution.
Proving the negation of the conjecture will usually mean giving a solution, though given the
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classical setting it is also possible to provide multiple instantiations and prove one must be a
solution. (This was also the case for the previous two classes of conjectures.) The conjectures
have the form

∀X.combinator X → ∀Y.combinator Y → ∀Z.combinator Z → ∀W.combinator W →
φX

1 → φX
2 → φY

3 → φY
4 → φZ

5 → φZ
6 → φW

7 → φW
8 → ⊥

where φV
i is a proposition giving a flex-rigid pair with local variables and with V as the head

of the left. To be more specific each φV
i has the form

∀x.combinator x → ∀y.combinator y → ∀z.combinator z → ∀w.combinator w →
combinator_equiv (V v1 v2 v3 v4 s1 . . . sn) t

where each vi ∈ {x, y, z, w}, t is a random rigid combinator and each of s1, . . . , sn is a random405

combinator. In this context a random rigid combinator is either K t1 or S t1 where t1 is a406

random combinator, or S t1 t2 where t1 and t2 are random combinators, or v t1 · · · tn where407

v ∈ {x, y, z, w} and t1, . . . , tn are random combinators. A random combinator is h t1 · · · tn408

where h ∈ {S,K,X, Y, Z,W, x, y, z, w} and t1, . . . , tn are random combinators.409

Each of these problems can be viewed as a first-order problem. In the first-order variant410

we could assume everything is a combinator (so combinator can be omitted) and use equality411

to play the role of combinator_equiv. It should generally be possible to mimic the equational412

reasoning of a first-order proof in the set theory representation by using appropriate lemmas413

about combinator and combinator_equiv.414

Furthermore it should be possible to define a notion of reduction and prove that if two415

terms are equivalent via combinator_equiv, then they must have a common reduct. This416

would allow one to prove the positive version of the conjecture (meaning there is no solution).417

Abstract HF problems418

The conjectures in the Abstract HF class are about hereditarily finite sets, but without
assuming the full properties about the relevant relations, sets and functions. We fix 24
distinct variables: r0, r1 and r2 of type ιιo, x0, x1, x2, x3 and x4 of type ι, f0 and f1 of
type ιι, g0, g1 and g2 of type ιιι and p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 and p10 of type ιo.
Each of these variable has an intended meaning which can be given by a substitution θ. For
example, θ(r0) =∈, meaning r0 is intended to correspond to set membership. Each generated
conjecture is of the form

∀r0r1r2 : ιιo.∀x0x1x2x3x4.∀f0f1 : ιι.∀g0g1g2 : ιιι.∀p0 · · · p10 : ιo.
φ1 → · · · → φn → ψ.

The propositions φ1, . . . , φn, ψ are chosen from a set of 1229 specific propositions which hold419

for HF sets, but may not hold in the abstract case. The conjecture essential states that the420

selections of φi are sufficient to infer the selected ψ.421

AIM Conjecture Problems422

There are two kinds of AIM Conjecture [13] related problems: one using Loop_with_defs_cex1423

and one using Loop_with_defs_cex2. In both cases the conjecture states that no loop exists424

with counterexamples of the first or second kind satisfying a number of extra equations.425

The two kinds of counterexamples assert that the loop has elements violating one of two426

identities. An AIM loop violating either of the identities would be a counterexample to427

the AIM Conjecture. The pseudorandom propositions do not assume the loop is AIM, but428
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only assume some AIM-like identities hold. That is, instead of assuming all inner mappings429

commute, the assumption is that some inner mappings commute. Furthermore, in some cases430

some specific inner mappings are assumed to have a small order (which would not be true in431

all AIM loops).432

Unfortunately there was a bug in the HF defining equation for loops (omitting that the433

identity element must be in the carrier). This made the negation of all of the pseudorandom434

propositions in this class easily provable. A Proofgold developer used this bug to collect the435

bounties and redistribute the bounties to the corrected versions.436

Diophantine Modulo437

A Diophantine Modulo problem generates two polynomials p and q in variables x, y and z438

and a number m (of up to 64 bits). The conjecture states there is no choice of (hereditarily439

finite) sets x, y and z such that the cardinality of p plus 16 is the same as the cardinality of440

q modulo m. The negation of the conjecture could be proven by giving appropriate x, y and441

z and proving they have the property.442

Diophantine443

The final class is given by Diophantine problems (either equations or inequalities). Two444

polynomials p and q in variables x, y, z are generated (as described above). Each polynomial445

uses 256 bits of information. The generated conjecture either states there are no (hereditarily446

finite) sets x, y and z such that the cardinality of p plus 16 is the same as the cardinality of447

q, or that the cardinality of p plus 16 is no larger than the cardinality of q.448

7.2 Large Formalization Projects449

Hales’s Flyspeck [9] project formalizing the proof of the Kepler Conjecture has been one of the450

largest challenges in interactive theorem proving so far, involving several ITP communities451

and to some extent a centralized bounty system. It took more than 10 years to complete452

and combined the expertise of proof assistant users of the HOL Light, Isabelle/HOL and453

Coq systems. With our bounty system, the effort could have been shared with an even454

wider community of researchers interested in formal verification. This would involve making455

a plan of the steps required to prove the final theorem, splitting the formalization into456

multiple independent parts, and putting them as conjectures into Proofgold with bounties on457

them. A knowledgeable independent user of an interactive theorem prover interface capable458

of producing Proofgold terms, could then decide to provide a proof for a particular part.459

The final proof is completed when all the bounties have been collected. The reward for a460

particular proof may be increased if it is harder than initially thought and/or to motivate461

Proofgold users to solve it sooner. In the long run, an attempt at formally proving Fermat’s462

last theorem in Proofgold could be made using this approach. An even better target to test463

the effectiveness of the bounty system would be the classification of finite simple groups. Its464

proof required the combined effort of about 100 authors for 50 years and consists of tens of465

thousands of pages distributed over several hundred journal articles.466

8 Related Work467

The most obvious related work is Qeditas, the project that evolved into Proofgold, as468

described in Section 2. The authors are also aware of two other ideas for projects for doing469

formal mathematics on a blockchain.470
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Mathcoin [23] describes high level ideas for a blockchain on which users can use their471

tokens to “bet” on whether or not a mathematical statement is true. This would allow472

mathematical knowledge to be reflected in the blockchain before a full proof is available.473

Additionally a blockchain project for collaborative formalization of mathematics is de-474

scribed by Lim, et. al., in [14]. The focus in this case is on “recording and encouraging”475

collaboration between humans (and AI tools) formalizing in various different theorem proving476

systems. The authors describe in some detail the intended high level architecture (given as477

various layers) for such a system, and give examples for how collaboration would take place.478

The two projects introduce some interesting ideas. However, so far as the authors are479

aware, neither project has corresponding software or a currently running network.480
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