
Adversarial Learning to Reason in an Arbitrary Logic

Stanisław J. Purgał and Cezary Kaliszyk
University of Innsbruck

Austria

Abstract

Existing approaches to learning to prove theorems focus
on particular logics and datasets. In this work, we propose
Monte-Carlo simulations guided by reinforcement learning
that can work in an arbitrarily specified logic, without any hu-
man knowledge or set of problems. Since the algorithm does
not need any training dataset, it is able to learn to work with
any logical foundation, even when there is no body of proofs
or even conjectures available. We practically demonstrate the
feasibility of the approach in multiple logical systems. The
approach is stronger than training on randomly generated data
but weaker than the approaches trained on tailored axiom and
conjecture sets. It however allows us to apply machine learn-
ing to automated theorem proving for many logics, where no
such attempts have been tried to date, such as intuitionistic
logic or linear logic.

Introduction
In the last decade for many logical systems machine learn-
ing approaches have managed to improve on the best human
heuristics. This worked well for example in classical first-
order logic guiding the superposition calculus (Jakubuv et al.
2020), tableaux calculus (Olsák, Kaliszyk, and Urban 2020),
or even in higher-order logic (Färber and Brown 2016). In all
these works strategies based on machine learning can signif-
icantly improve on the best human-designed ones.

To train such machine-learned strategies, datasets of prob-
lems and baselines on these problems are required. In partic-
ular successful proofs (and in some cases also unsuccessful
proofs (Kaliszyk et al. 2018)) are gathered and used to train
a machine-learned version of the prover.

In this work, we consider the same problem but without
a fixed logic and without a dataset of problems given. We
apply a policy-guidance algorithm (known for example from
AlphaZero (Silver et al. 2017)) to proving in an arbitrary
logic without a given problem set. In particular we:

• propose a theorem-construction game that allows for
learning theorem proving with AlphaZero, without rely-
ing on training data;

• propose the first dataset for learning for multiple logics,
together with learning baselines for this dataset.

Copyright © 2021by the authors. All rights reserved.

• propose an adjusted Monte-Carlo Tree Search that is able
to take into account certain (sure) information, when a
player makes multiple moves (explained in “Certain Value
Propagation” section);

• evaluate the trained prover on the dataset showing that
it improves proof capability in various considered logics;
and

• as many other problems and games can be directly en-
coded as logical problems we show that the proposed
universal learning for logic also works on some encoded
games, such as Sokoban.

Related Work
(Silver et al. 2017) have shown that Monte-Carlo tree search
combined with reinforcement learning applied to policy and
value functions can generalize to multiple logical games
(Go, Chess, Shogi).

The work of (Firoiu et al. 2021) focuses on classical first-
order logic without equality and the resolution calculus (so
only one of the many logics we consider) and (like us) does
not use the complete TPTP problems, but only the axiom
sets to learn. There is however a significant overlap between
the axioms and conjectures in other problems. The result-
ing prover does learn to prove theorems but is significantly
weaker than E-prover on the TPTP problems. The idea to use
only the axioms has already been considered by (Bansal et
al. 2019). Even if no original conjectures are exposed to the
prover, the dataset used for training is quite large, in com-
parison with ours, where no formulas are given at all.

As already discussed in the introduction, there are many
approaches to applying MCTS with policy and guidance
learning in various fixed calculi and on fixed datasets
(Kaliszyk et al. 2018; Rawson and Reger 2019). The results
are better than those we are able to get here, but no new log-
ics or problems are tried and generalization and transfer have
been very limited so far. The AlphaZero algorithm has also
been applied in theorem proving to the synthesis of formulas
(Brown and Gauthier 2019) and functions (Gauthier 2020).

Kaiser et al. demonstrated that theorem proving can be
used to solve many games, such as the ones in the Gen-
eral Game Playing competition (Kaiser and Stafiniak 2011).
With the current work, we show that learning for logic can
be also applied to these games.

Preliminaries
AlphaZero
The core of the AlphaZero algorithm (Silver et al. 2017) is
learning from self-play. It trains a neural network to evaluate
the states of a game to estimate the final outcome of the game
as well as a policy maximizing the expected outcome. Using
the neural network in the current stage of learning a lot of
playouts are generated, then this data is used as training data
for further improvement.

For training value estimation, the algorithm uses the ac-
tual outcomes of the games. To train policy estimation, a
Monte-Carlo Tree Search (MCTS) is used to compute a bet-
ter policy, then the network is trained to return this better
policy.

Monte-Carlo Tree Search
For the purpose of training the policy evaluating network
we need to provide it with a somewhat better policy. This is
done by exploring a tree of possible moves. It is a guided ex-
ploration, biased towards the moves pointed to by the policy
and to where the value estimations are higher.

A tree is constructed with every node representing a state
of the game. Each of those states is evaluated using the neu-
ral network. When deciding where to add a new node (thus
exploring a branch of the game further) the MCTS algorithm
takes into account both the value and the policy estimations
from the neural network (biased toward following the policy
and higher values), as well as how well a branch was already
explored (biased to explore yet unexplored branches more).

After adding a set amount of nodes to the tree, the new
better policy is defined to be proportional to the number of
nodes explored below each of the immediate children of the
root node (representing the state for which we are computing
a better policy).

Approach
The theorem-construction game
We propose a two-player game such that a system trained to
play the game well could be used to effectively prove the the-
orems of a given logic system. The first player (referred to as
adversary) constructs a provable statement, while the other
player (referred to as prover) tries to prove it. The goal of
the adversary is to construct such a theorem, that the prover
will fail to prove it. However, because of the available game
moves (construction steps), the statements are always prov-
able.

We represent the game objects using Prolog-like terms,
where a term can be either a variable or a pair of an atom
and a list of subterms. In the examples, we use the conven-
tion of marking variables with capital letters, and denoting
compound terms as an atom name followed by a list of sub-
terms in brackets (skipped when the list is empty). For ex-
ample tee(A,implies(B,false)), which can also be
expressed with operators like (A ⊢ (B → ⊥)).

The construction game is defined for a given set of
inference rules. An inference rule is a pair of a term
and a list of terms, that can share variables. For example

Adversary constructs a theorem

Prover proves the theorem

fail

succeed

succeed

fail

Adversary winsProver wins

Figure 1: High-level overview of the theorem-construction
game.

tee(A,and(B,C)) ← tee(A,B),tee(A,C), equiva-
lent to (A ⊢ (B ∧ C))← (A ⊢ B), (A ⊢ C).

For the prover, a game state consists of a list of terms that
need to be proven (together with the information that the
prover is making the move). During their move, a player can
choose one of the given inference rules (the action space is
the set of inference rules), and apply it to the first term of the
list. The left side of the rule is then unified with that term.
If the unification fails, the player making the move loses. If
it succeeds, the term is removed from the list, and the right
side of the rule (after unification) is added.

The adversary (the player constructing a theorem) makes
moves in much the same way, except instead of starting with
a theorem to be proven, it starts with a single variable. Ap-
plying inference rules to prove this variable will unify it with
some term. If the proof is successfully completed, this vari-
able we started with will be unified with a provable theo-
rem. We keep track of this variable in the game state. When
the adversary finishes its proof, we pass the constructed the-
orem to the prover, after replacing all remaining variables
with fresh constants.

The second player tries to prove the theorem, winning
when the list is empty. To better illustrate the working of our
theorem-construction game we present the rules of a con-
crete game in Figure 2 and an example playout in Figure 3.

A,B ⊢ A← (1)
A ⊢ (B → C)← (B,A ⊢ C) (2)
A ⊢ (B ∧ C)← (A ⊢ B), (A ⊢ C) (3)

A ⊢ B ← (A ⊢ (B ∧ C)) (4)
A ⊢ B ← (A ⊢ (C ∧B)) (5)
A ⊢ B ← (A ⊢ ⊥) (6)

Figure 2: A subset of propositional logic inference rules used
in the example in figure 3

Certain Value Propagation
The AlphaZero (Silver et al. 2017) algorithm utilizes a neu-
ral network to estimate state values (a number in range
(−1, 1), we will call it vθ) and policies (a vector with as
many dimensions as the size of the action space). Then a

rule terms to be proven constructed theorem
X X

2 A,B ⊢ C B ⊢ A→ C
3 (A,B ⊢ D), (A,B ⊢ E) B ⊢ A→ (D ∧ E)
4 (A,B ⊢ (D ∧ F)), (A,B ⊢ E) B ⊢ A→ (D ∧ E)
1 (D ∧ F), B ⊢ E B ⊢ (D ∧ F)→ (D ∧ E)
6 (D ∧ F), B ⊢ ⊥ B ⊢ (D ∧ F)→ (D ∧ E)
5 (D ∧ F), B ⊢ (G ∧ ⊥) B ⊢ (D ∧ F)→ (D ∧ E)
1 B ⊢ (D ∧ ⊥)→ (D ∧ E)

b ⊢ (d ∧ ⊥)→ (d ∧ e)
2 (d ∧ ⊥),b ⊢ (d ∧ e)
6 (d ∧ ⊥),b ⊢ ⊥
5 (d ∧ ⊥),b ⊢ (A ∧ ⊥)
1 Prover won

Figure 3: An example of a playout of the theorem-construction game with the inference rules shown in figure 2

Monte Carlo Tree Search (MCTS) (Kocsis and Szepesvári
2006) is used to compute better estimates of value and pol-
icy. This is done by exploring the tree of possible playouts,
with a bias toward where value and policy lead to.

During this exploration, MCTS maintains a better value
estimation of every state (we will refer to it as v), which is
defined to be the average of vθ of all explored descendants.
We will use an equivalent definition, as the weighted aver-
age of immediate children, with weights being the number
of visits of a given node (the difference will become impor-
tant).

v(n) =
vθ(n) +

∑
d<n vθ(d)

|d : d < n|+ 1
=

=
vθ(n) +

∑
c∈children(n) v(c) ∗ (|d : d < c|+ 1)

|d : d < n|+ 1

In our version of MCTS, for every node we keep track of
a lower and upper bound for possible node values. For non-
final nodes, these are simply (−1, 1) (as this is the range of
possible outcomes), but for the final nodes, the bounds are
both equal to the final reward. These bounds are propagated
up the tree in a natural way (taking into account state own-
ership). Then, for every node we compute a new vc value,
which is simply v adjusted to fall within lower-upper bounds
– so eg. if the lower bound is higher than v, then vc will be
equal to the lower bound. Then, when computing v for the
nodes above we use this new vc value rather than the old v.

vc(n) = max(lower(n),min(upper(n), v(n)))

v(n) =
vθ(n) +

∑
c∈children(n) vc(c) ∗ (|d : d < c|+ 1)

|d : d < n|+ 1

.
Additionally, whenever the value estimation of a state is

determined to be−1 (the lowest possible outcome), this state
will be avoided. This avoidance is applied both to MCTS ex-
ploration and the choice of an action to take during playouts.

The impact of certain value propagation on the final per-
formance of the prover is shown in Fig. 5.

v = −0.46
vθ = −0.1

v = −0.6
vθ = −0.6

v = 0.5
vθ = 0.3

v = 0.2
vθ = 0.2

v = 1
(final)

v = −0.76
vθ = 0.1
(−1, 1)

vc = −0.7

v = −0.6
vθ = −0.6
(−1, 1)

vc = −0.6

v = 0.5
vθ = 0.3
(1, 1)
vc = 1

v = 0.2
vθ = 0.2
(−1, 1)
vc = 0.2

v = 1
(final)
(1, 1)
vc = 1

Figure 4: Examples of value estimation in MCTS without
Certain Value Propagation (left) and with (right). State own-
ership (which player is making a move) is marked with
color.

Auxiliary replays

To facilitate the prover learning to prove theorems con-
structed by the adversary we add additional auxiliary re-
plays. These come from the games won by the adversary
when the prover fails to prove a constructed theorem. Be-
cause of the way the theorem was constructed we know how
to prove it – we just need to apply the same moves that the
adversary used to construct it. Using this fact, we create a
replay that shows how the theorem could be proven. In this
replay, the policy is not computed using MCTS, but rather is
just a one-hot vector pointing to the move that the adversary
made when constructing the theorem.

With these auxiliary replays, our algorithm can be con-
sidered to train on artificially constructed theorems, that at
first come from simply randomly applying inference rules,
but later on uses neural guidance to find theorems that the
prover cannot yet prove. However, as mentioned earlier, we
only do this for theorems that the prover failed to prove.

The impact of including auxiliary replays on the final per-
formance of the prover is shown in figure 5.

Balancing training data
Since the theorem proving game (explain in section “The
theorem-construction game”) is asymmetrical, simply using
all replay data for training would result in an unbalanced
dataset. On top of this, we use auxiliary replays (explained in
section “Auxiliary replays”), further disturbing the training
data.

To deal with this imbalance we apply training data balanc-
ing. Replays are split into parts according to which player
won, and a third set of auxiliary replays. All training batches
contain the same number of examples from each part.

However, this means disturbing the way the Mean Square
Error loss works for value estimation. Consider a value es-
timation of the starting state. Normally, optimal loss for it
would be achieved if the estimate was the average outcome
of the game, but with balancing the optimal loss will be
achieved by estimating the value to be 0 (mean between los-
ing and winning). This problem affects every state that oc-
curs multiple times in the training dataset.

To counteract this problem, the value loss is weighted in
proportion to the size of the part of the data, from which the
point originates. So if a player A won in proportion 4 : 1, the
training batches would include games won by this player in
proportion 1 : 1, but 4

5 of the loss (and therefore gradients)
would be determined by data from games won by the player
A. For auxiliary replays, this weight is set to 0 and only pol-
icy is learned from them.

The impact of balancing training data and weighing the
value loss on the final performance of the prover is shown in
figure 5.

0

25

50

75

100

0 2 4 6

all modifications no value weights no certain value propagation
unbalanced training no auxiliary replays

Figure 5: The impact of our modifications on our algorithm.
Solved first-order classical tableaux test problems over time
(episodes) with 5k games per episode.

Applicability
As mentioned in section “The theorem-construction game”,
our system works with a logic system defined by a set of in-
ference rules. This set of rules can be thought of as a Prolog
program, and since Prolog is Turing-complete our method
can (at least theoretically) be used to learn to reason in any
formally defined (and decidable) context. As an example of
wide applicability, we train our system to solve Sokoban
puzzles. This can be done by defining rules of the game as
inference rules of a pseudo-“logic system”.

This of course does not mean that the system will al-
ways work well. For example, a saturation prover requires

all terms used in the proof to be fully determined from the
start. This negates the advantage of the adversary player,
who normally can still modify the constructed theorem late
into its proof. Because of this, the probability of constructing
a theorem that an untrained prover cannot prove becomes re-
ally low – so low that potentially no such theorems will be
generated for the initial training set. In such a situation, noth-
ing can be learned from such data and the system is stuck.
This problem could potentially be overcome by simply gen-
erating enough playouts, but in our experiments with using
a saturation prover, the system got stuck after the first step,
with the prover winning all games. This was the case in our
experiments using a saturation proving method, with 104

games generated per episode (possibly more games could
help).

Failure states
Another consequence of the game being asymmetrical is
the possibility of the training getting stuck when one player
starts winning every time. The mechanism of auxiliary re-
plays mentioned above counteracts this to some extent, al-
lowing the prover to still learn even if the adversary is al-
ways successfully constructing a hard enough theorem. If
the prover was winning every game, however, we would
need to rely on exploration for the adversary to find some-
thing hard to prove. This situation is however virtually im-
possible, because of the exploration noise used during play-
outs. This should lead to adversary towards theorems where
the prover is uncertain and sometimes loses due to explo-
ration noise, and then to theorems where the prover fails.

There is however another failure state which if reached
would be entirely stable. It is possible because the construc-
tion of theorems is inherently easier than proving. Consider
a theorem ∃xHASH(x) = y. It is easy to prove such a theo-
rem if one can choose what y is going to be. If y is already
decided, proving such a theorem becomes extremely diffi-
cult. So difficult in fact, that we cannot hope that a neural
network would be able to learn to do this.

If the adversary found such a space of Uninteresting Hard
Theorems, it would never learn to do anything else. After all,
it is a winning strategy for this game. The prover, even using
the auxiliary replays would never learn to do anything useful
in this situation, and would gradually forget all the useful
knowledge learned previously.

This does not seem to happen in any of our experiments.
In some of our considered logic systems, it is not even clear
that such an Uninteresting Hard Theorem space exists.

Neural architecture
For evaluating state value and policy we use a Graph Neu-
ral Network similar to the one described in (Purgal 2020).
It is essentially a Graph Attention Network (Veličković et
al. 2017) using dot-product attention from the Transformer
model (Vaswani et al. 2017) with different attention masks
for different attention heads. One Graph Neural Network is
used to create a single vector representation of the graph,
which is then fed to the final layers to estimate policy and
value.

Graph Neural
Network

value

policy

input graph

Game states are represented as syntactic graphs. One
graph contains all terms that need to be proven, together with
information about which player the state belongs to, and (for
the adversary player) the state of the constructed theorem.
An example of such a graph is shown in figure 6.

,/2

:=/2 %constructing/1

[|]/2

%variable/0

:=/2

&/2

%variable/0=>/2

%variable/0 %variable/0

&/2

Figure 6: An example graph representing the game state
from the game in figure 3 after initial 4 moves.

A single Graph Neural Network is used to evaluate the
states for both players, the prover and the adversary.

Evaluation
To test the impact of our method of adversarial train-
ing we compare an algorithm trained using our theorem-
construction game with a prover trained using uniformly
generated random data (an approach somewhat similar to
(Firoiu et al. 2021)).

The methods are tested on a dataset not seen by either
approach. This test dataset is human-generated (see section
“Considered logics” for details on each test dataset) and is
often very far outside the training distribution.

Baseline
We generate baseline training data by applying inference
rules randomly. This is essentially the adversary from our
game doing random moves. Because this does not require
evaluating states with a neural network, generating such data
is much cheaper, so we generate more playouts – 106 (we
note that not all playouts result in a constructed theorem).

We use all data generated this way to train a network to
estimate policy and value. The policy is a one-hot vector
pointing to what the adversary did to construct a theorem,
and the value is 0.99n with n being the number of moves
left to do.

logic baseline

best
during
game

training

total
solved
during
training

int. prop. sequent 12 12 13
classical FO sequent 42 39 40

classical FO tableaux 73 79 83
classical FO Hilbert 38 37 38

modal K prop. sequent 2 5 7
modal T prop. sequent 6 12 13

modal S4 prop. sequent 2 6 8
modal S5 prop. sequent 4 24 24

linear prop. sequent 37 34 39
sokoban solving 4 10 12

Table 1: Results of training in all tested logics – int. and
prop. stand for intuitionistic and propositional

Setup
We implemented the proposed theorem-construction game
engine SWI-Prolog (Wielemaker et al. 2010) using PyTorch
(Paszke et al. 2019) for the proposed adversarial neural ar-
chitecture.

We train our system in episodes, first generating 104 play-
outs, then training the neural network using these playouts as
training data. This step is repeated multiple times, and after
every one, we evaluate the system using the test dataset.

Experiments
To test how much the prover has learned, we play the game
in a similar way to when training, except skipping the con-
struction phase, and instead using a theorem from the test
set. During such testing we forgo forcing exploration – we
do not add exploration noise in Monte-Carlo Tree Search
and use the most probable action instead of choosing ran-
domly. Also, when a final state is found during MCTS ex-
ploration, we just follow a path to it.

For termination during testing we use a limit on explored
states – nodes added to the MCTS tree. Because a part of the
tree can be reused for the next state (the part below the node
that was chosen) this does not imply any strict turn limit.

Considered logics
Intuitionistic We train our prover on sequent calculus in
propositional intuitionistic logic (Huth and Ryan 2000). For
test theorems, we use a part of the ILTP library (Raths, Ot-
ten, and Kreitz 2005).

Classical We run three experiments with classical first-
order logic, trying out three different proof systems. One
is sequential calculus, the same as used with intuition-
istic logic, another is the Tableaux connection prover
(Hähnle 2001), and lastly the rather unwieldy Hilbert sys-
tem. For the test set, we use a small subset of the Mizar40
dataset (Kaliszyk and Urban 2015) of formulas that do not
use equality.

Figure 7: A few examples of Sokoban problems

Linear We also train in linear logic (Girard 1987), only
in the propositional setting. For the evaluation we use the
LLTP (Olarte et al. 2020) library, most of which is taken
from ILLTP (Olarte et al. 2019). We also use a few hand-
written examples.

Modal In another experiment we train the prover to work
with modal propositional logic (Blackburn, van Benthem,
and Wolter 2007), in four variants: K, T, S4, S5. Each of
those extends the definition of the logic by an additional rule.

For evaluation we use the propositional part of the
QMTLP library (Raths and Otten 2011). The set of test the-
orems is expanded for each consecutive added rule.

Sokoban Sokoban is a classic puzzle game, where the
goal is to push boxes into their target positions. The puzzle
is PSPACE-complete (Culberson 1997). We only generate
puzzles of size 6 by 6. For testing we use a dataset available
online1 (only the problems that can fit into a 6 by 6 grid). A
few examples of such problems are shown in figure 7.

Results and Discussion
The results of the evaluation are presented in table 1. We
compare the baseline against the last model trained in the
adversarial setup, and additionally list the number of unique
problems solved in all training epochs. For all modal log-
ics as well as for classical first-order Tableaux the pro-
posed adversarial theorem-construction game leads to many
more solved problems. For a number of other logical cal-
culi, the adversarial version is slower but leads to finding
solutions different than those trained in the supervised set-
ting, therefore leading to a large number of total solutions
found. This is the case for intuitionistic sequent calculus
and linear logic. Among the tried calculi, only for the clas-
sical sequent-calculus and Hilbert-calculus there is no ad-
vantage - this is likely due to the fact that the calculus is
much closer to the syntax and the learned baseline can gen-
eralize enough. Finally, for the encoded Sokoban games the
results are particularly good, with many games solved only
in the adversarial-logical setting. We believe, that the adver-
sary learns to construct more and more complex Sokoban-
encoded proof games, while the player learns to solve them,
in a way similar to curriculum learning.

Forwards vs. backwards conjecturing
During our experiments we briefly considered implement-
ing a different method of constructing theorems, namely

1https://sourceforge.net/projects/
sokoban-solver-statistics/

forward constructing: starting from assumptions, working
towards the theorem. This method is used in (Firoiu et al.
2021) to generate synthetic data (though without any train-
ing for the generator).

The problem with forward constructing (and the reason
we decided not to use it) can be illustrated using the follow-
ing inference rule (disjunction elimination):

(T ⊢ C)← (T ⊢ A ∨B), (T ⊢ A→ C), (T ⊢ B → C)

For the adversary to ever successfully apply such a rule,
it would first have to construct three statements specifically
fitting the rule. In the initial phase of random exploration
that would be extremely unlikely. Moreover, the policy pre-
dictor will quickly learn that applying this rule always ends
in failure, thus making its use even more unlikely after some
training. In backwards construction the rule can easily be
applied, and simply results in three new statements that con-
sequently need to be proven.

This problem essentially does not exists in the case of a
saturation prover, which uses a single inference rule that can
be applied anywhere.

Comparison with existing methods
Saturation provers are the state-of-the-art for first-order the-
orem proving are. These are designed narrow down the
search space compared to possibly applying any inference
rule at any point. Moreover, their solutions often involve mil-
lions of inference steps, while in our case the limit of moves
is in the order of 102. As such many problems from the test
dataset may not even technically be solvable by our system.

For these reasons, our system performs a lot worse than
these in their respective domains. It can however be applied
to any formally defined domain and is (as far as the authors
know) the only proposed theorem-proving system that may
continuously learn and improve without any dataset.

Conclusions
We presented an algorithm for learning to reason in an arbi-
trary logic. The system, given only a formal definition of a
logic, learns to construct increasingly harder problems in the
logic and learns to prove them. We show that the system does
learn to perform better than a baseline system trained using
uniformly generated logical problems. The performance is
of course weaker than that of domain-specific Automated
Theorem Provers and provers trained on tailored datasets.
We are, however, able to construct automatically the first ef-
ficient learned automated theorem provers for some logics
where none existed before, including various modal logics.

Future work includes encoding more intricate theorem
proving calculi, in order to compare them with the more tai-
lored machine-learned systems. Furthermore, for most of the
considered logics, the performance on the test sets has stag-
nated after a few episodes. It remains an open question if
trying a compute power comparable with AlphaZero (Silver
et al. 2017) would produce significantly better results.

Acknowledgements This work has been supported by the
ERC starting grant no. 714034 SMART.

References
Bansal, K.; Loos, S. M.; Rabe, M. N.; and Szegedy, C. 2019.
Learning to reason in large theories without imitation. ArXiv
abs/1905.10501.
Blackburn, P.; van Benthem, J. F. A. K.; and Wolter, F., eds.
2007. Handbook of Modal Logic, volume 3 of Studies in
logic and practical reasoning. North-Holland.
Brown, C. E., and Gauthier, T. 2019. Self-learned formula
synthesis in set theory.
Culberson, J. 1997. Sokoban is pspace-complete.
Färber, M., and Brown, C. E. 2016. Internal guidance for sa-
tallax. In Olivetti, N., and Tiwari, A., eds., Automated Rea-
soning - 8th International Joint Conference, IJCAR 2016,
Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, vol-
ume 9706 of Lecture Notes in Computer Science, 349–361.
Springer.
Firoiu, V.; Aygun, E.; Anand, A.; Ahmed, Z.; Glorot, X.;
Orseau, L.; Zhang, L.; Precup, D.; and Mourad, S. 2021.
Training a first-order theorem prover from synthetic data.
Gauthier, T. 2020. Deep reinforcement learning for synthe-
sizing functions in higher-order logic. In Albert, E., and
Kovács, L., eds., LPAR 2020: 23rd International Confer-
ence on Logic for Programming, Artificial Intelligence and
Reasoning, Alicante, Spain, May 22-27, 2020, volume 73 of
EPiC Series in Computing, 230–248. EasyChair.
Girard, J.-Y. 1987. Linear logic. Theoretical computer sci-
ence 50(1):1–101.
Hähnle, R. 2001. Tableaux and related methods. In Robin-
son, J. A., and Voronkov, A., eds., Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press. 100–178.
Huth, M., and Ryan, M. D. 2000. Logic in computer sci-
ence - modelling and reasoning about systems. Cambridge
University Press.
Jakubuv, J.; Chvalovský, K.; Olsák, M.; Piotrowski, B.;
Suda, M.; and Urban, J. 2020. ENIGMA anonymous:
Symbol-independent inference guiding machine (system de-
scription). In Peltier, N., and Sofronie-Stokkermans, V., eds.,
Automated Reasoning - 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part II, volume 12167 of Lecture Notes in Computer Sci-
ence, 448–463. Springer.
Kaiser, L., and Stafiniak, L. 2011. First-order logic with
counting for general game playing. In Burgard, W., and
Roth, D., eds., Proceedings of the Twenty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. AAAI Press.
Kaliszyk, C., and Urban, J. 2015. MizAR 40 for Mizar 40.
J. Autom. Reasoning 55(3):245–256.
Kaliszyk, C.; Urban, J.; Michalewski, H.; and Olšák, M.
2018. Reinforcement learning of theorem proving. In Ben-
gio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-
Bianchi, N.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 31, 8836–8847. Curran As-
sociates, Inc.

Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Olarte, C.; de Paiva, V.; Pimentel, E.; and Reis, G. 2019.
The illtp library for intuitionistic linear logic. arXiv preprint
arXiv:1904.06850.
Olarte, C.; de Paiva, V.; Pimentel, E.; and Reis, G. 2020.
Linear logic theorem proving. https://github.com/
meta-logic/lltp.
Olsák, M.; Kaliszyk, C.; and Urban, J. 2020. Property invari-
ant embedding for automated reasoning. In Giacomo, G. D.;
Catalá, A.; Dilkina, B.; Milano, M.; Barro, S.; Bugarı́n, A.;
and Lang, J., eds., ECAI 2020 - 24th European Conference
on Artificial Intelligence, volume 325 of Frontiers in Artifi-
cial Intelligence and Applications, 1395–1402. IOS Press.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026–8037.
Purgal, S. J. 2020. Improving expressivity of graph neural
networks. 2020 International Joint Conference on Neural
Networks (IJCNN) 1–7.
Raths, T., and Otten, J. 2011. The qmltp library: Bench-
marking theorem provers for modal logics. Technical report,
Technical Report, University of Potsdam.
Raths, T.; Otten, J.; and Kreitz, C. 2005. The iltp library:
Benchmarking automated theorem provers for intuitionistic
logic. In International Conference on Automated Reason-
ing with Analytic Tableaux and Related Methods, 333–337.
Springer.
Rawson, M., and Reger, G. 2019. A neurally-guided, paral-
lel theorem prover. In FroCos.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. ArXiv abs/1712.01815.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.
Wielemaker, J.; Schrijvers, T.; Triska, M.; and Lager, T.
2010. Swi-prolog.

